LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Snowden, Michael E.; Edwards, Martin A.; Rudd, Nicola C.; Macpherson, Julie. V.; Unwin, Patrick R. (2013)
Publisher: Royal Society of Chemistry
Journal: Phys. Chem. Chem. Phys., 2013, 15(14), 5030\u20135038
Languages: English
Types: Article
Subjects: QD
The intrinsic electrochemical properties and activity of single walled carbon nanotube (SWNT) network electrodes modified by a drop-cast Nafion film have been determined using the one electron oxidation of ferrocene trimethyl ammonium (FcTMA+) as a model redox probe in the Nafion film. Facilitated by the very low transport coefficient of FcTMA+ in Nafion (apparent diffusion coefficient of 1.8 × 10−10 cm2 s−1), SWNTs in the 2-D network behave as individual elements, at short (practical) times, each with their own characteristic diffusion, independent of neighbouring sites, and the response is diagnostic of the proportion of SWNTs active in the composite. Data are analysed using candidate models for cases where: (i) electron transfer events only occur at discrete sites along the sidewall (with a defect density typical of chemical vapour deposition SWNTs); (ii) all of the SWNTs in a network are active. The first case predicts currents that are much smaller than seen experimentally, indicating that significant portions of SWNTs are active in the SWNT–Nafion composite. However, the predictions for a fully active SWNT result in higher currents than seen experimentally, indicating that a fraction of SWNTs are not connected and/or that not all SWNTs are wetted completely by the Nafion film to provide full access of the redox mediator to the SWNT surface.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • S. Hrapovic, Y. Liu, K. B. Male and J. H. T. Luong, Anal. Chem., 2003, 76, 1083-1088.
    • Y. C. Tsai, J. M. Chen and F. Marken, Microchim. Acta, 2005, 150, 269-276.
    • M. Zhang and W. Gorski, J. Am. Chem. Soc., 2005, 127, 2058-2059.
    • V. Khomenko, E. Frackowiak and F. Béguin, Electrochim. Acta, 2005, 50, 2499-2506.
    • P. P. Joshi, S. A. Merchant, Y. Wang and D. W. Schmidtke, Anal. Chem., 2005, 77, 3183-3188.
    • N. G. Sahoo, S. Rana, J. W. Cho, L. Li and S. H. Chan, Prog. Polym. Sci., 2010, 35, 837-867.
    • K. A. Mauritz and R. B. Moore, Chem. Rev., 2004, 104, 4535-4586.
    • F.-H. Wu, G.-C. Zhao and X.-W. Wei, Electrochem. Commun., 2002, 4, 690- 694.
    • Z. Guo and S. Dong, Anal. Chem., 2004, 76, 2683-2688.
    • J. Li, S. Guo, Y. Zhai and E. Wang, Electrochem. Commun., 2009, 11, 1085- 1088.
    • H. Xu, L. Zeng, S. Xing, Y. Xian and G. Shi, Electroanal., 2008, 20, 2655- 2662.
    • L. S. Rocha and H. M. Carapuca, Bioelectrochemistry, 2006, 69, 258-266.
    • B. J. Sanghavi and A. K. Srivastava, Electrochim. Acta, 2011, 56, 4188-4196.
    • R. Kannan, B. A. Kakade and V. K. Pillai, Angew. Chem.-Int. Edit., 2008, 47, 2653-2656.
    • Viswanathan, Fuel, 2002, 81, 2177-2190.
    • W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, J. Phys. Chem. B, 2006, 110, 15353-15358.
    • B. Smitha, S. Sridhar and A. A. Khan, J. Membr. Sci., 2005, 259, 10-26.
    • V. Tricoli, N. Carretta and M. Bartolozzi, J. Electrochem. Soc., 2000, 147, 1286-1290.
    • S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho and T. H. Lee, Electrochim. Acta, 1998, 43, 3693-3701.
    • Mathieu and B. Viswanathan, J. Phys. Chem. B, 2003, 107, 2701-2708.
    • T. P. Henning and A. J. Bard, J. Electrochem. Soc., 1983, 130, 613-621.
    • T. P. Henning, H. S. White and A. J. Bard, J. Am. Chem. Soc., 1982, 104, 5862-5868.
    • M. Krishnan, J. R. White, M. A. Fox and A. J. Bard, J. Am. Chem. Soc., 1983, 105, 7002-7003.
    • T. P. Henning, H. S. White and A. J. Bard, J. Am. Chem. Soc., 1981, 103, 3937-3938.
    • Chem. Chem. Phys., 2002, 4, 4036-4043.
    • F. C. Anson, Y. M. Tsou and J. M. Saveant, J. Electroanal. Chem., 1984, 178, 113-127.
    • D. A. Buttry and F. C. Anson, J. Am. Chem. Soc., 1982, 104, 4824-4829.
    • D. A. Buttry and F. C. Anson, J. Am. Chem. Soc., 1984, 106, 59-64.
    • M. Pyo and A. J. Bard, Electrochim. Acta, 1997, 42, 3077-3083.
    • P. Bertoncello, I. Ciani, F. Li and P. R. Unwin, Langmuir, 2006, 22, 10380- 10388.
    • Bioelectron., 2004, 20, 253-259.
    • X. Liu, L. Shi, W. Niu, H. Li and G. Xu, Biosens. Bioelectron., 2008, 23, 1887-1890.
    • Biochem., 2004, 331, 89-97.
    • D. R. S. Jeykumari, S. Ramaprabhu and S. S. Narayanan, Carbon, 2007, 45, 1340-1353.
    • C. R. Raj and S. Chakraborty, Biosens. Bioelectron., 2006, 22, 700-706.
    • Y. Cao, R. Yuan, Y. Chai, L. Mao, X. Yang, S. Yuan, Y. Yuan and Y. Liao, Electroanal., 2011, 23, 1418-1426.
    • S. Chen, R. Yuan, Y. Chai, L. Min, W. Li and Y. Xu, Electrochim. Acta, 2009, 54, 7242-7247.
    • P.-Y. Chen, R. Vittal, P.-C. Nien and K.-C. Ho, Biosens. Bioelectron., 2009, 24, 3504-3509.
    • H.-S. Wang, T.-H. Li, W.-L. Jia and H.-Y. Xu, Biosens. Bioelectron., 2006, 22, 664-669.
    • K. B. Wu and S. S. Hu, Microchim. Acta, 2004, 144, 131-137.
    • M. E. Rice, A. F. Oke, C. W. Bradberry and R. N. Adams, Brain Res., 1985, 340, 151-155.
    • J. A. Ni, H. X. Ju, H. Y. Chen and D. Leech, Anal. Chim. Acta, 1999, 378, 151-157.
    • J. Maruyama and I. Abe, Electrochim. Acta, 2001, 46, 3381-3386.
    • Kaden, Anal. Chim. Acta, 1999, 396, 1-12.
    • L. M. Moretto, T. Kohls, A. Chovin, N. Sojic and P. Ugo, Langmuir, 2008, 24, 6367-6374.
    • P. Bertoncello, L. Dennany, R. J. Forster and P. R. Unwin, Anal. Chem., 2007, 79, 7549-7553.
    • P. Bertoncello, A. Notargiacomo and C. Nicolini, Langmuir, 2005, 21, 172- 177.
    • P. Bertoncello and P. Ugo, J. Braz. Chem. Soc., 2003, 14, 517-522.
    • J. Wang, M. Musameh and Y. H. Lin, J. Am. Chem. Soc., 2003, 125, 2408- 2409.
    • M. A. Edwards, P. Bertoncello and P. R. Unwin, J. Phys. Chem. C, 2009, 113, 9218-9223.
    • I. Rubinstein and A. J. Bard, J. Am. Chem. Soc., 1980, 102, 6641-6642.
    • I. Rubinstein and A. J. Bard, J. Am. Chem. Soc., 1981, 103, 5007-5013.
    • Y. C. Tsai, S. C. Li and J. M. Chen, Langmuir, 2005, 21, 3653-3658.
    • Z. Lin, J. Chen and G. Chen, Electrochim. Acta, 2008, 53, 2396-2401.
    • I. Heller, J. Kong, A. Hendrik, H. A. Heering, K. A. Williams, S. G. Lemay and C. Dekker, Nano Lett., 2005, 5, 137-142.
    • I. Dumitrescu, P. R. Unwin, N. R. Wilson and J. V. Macpherson, Anal. Chem., 2008, 80, 3598-3605.
    • Chem. Soc., 2007, 129, 10982-10983.
    • Mater., 2009, 21, 3105-3109.
    • S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova and P. L. McEuen, Nano Lett., 2002, 2, 869-872.
    • Soc., 2005, 127, 10639-10647.
    • B. M. Quinn, C. Dekker and S. G. Lemay, J. Am. Chem. Soc., 2005, 127, 6146-6147.
    • I. Dumitrescu, P. R. Unwin and J. V. Macpherson, Chem. Commun., 2009, 45, 6886-6901.
    • C. E. Banks, R. R. Moore, T. J. Davies and R. G. Compton, Chem. Commun., 2004, 16, 1804-1805.
    • A. F. Holloway, K. Toghill, G. G. Wildgoose, R. G. Compton, M. A. H. Ward, G. Tobias, S. A. Llewellyn, B. n. Ballesteros, M. L. H. Green and A. Crossley, J. Phys. Chem. C, 2008, 112, 10389-10397.
    • A. Chou, T. Bocking, N. K. Singh and J. J. Gooding, Chem. Commun., 2005, 7, 842-844.
    • Commun., 2005, 7, 829-841.
    • J. Kim, H. Xiong, M. Hofmann, J. Kong and S. Amemiya, Anal. Chem., 2010, 82, 1605-1607.
    • P. V. Dudin, M. E. Snowden, J. V. Macpherson and P. R. Unwin, ACS Nano, 2011, 5, 10017-10025.
    • A. G. Güell, N. Ebejer, M. E. Snowden, K. McKelvey, J. V. Macpherson and P. R. Unwin, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 11487-11492.
    • E. Garcia, J. Kwak and A. J. Bard, Inorg. Chem., 1988, 27, 4377-4382.
    • J. P. Edgeworth, N. R. Wilson and J. V. Macpherson, Small, 2007, 3, 860-870.
    • E. S. Snow, J. P. Novak, P. M. Campbell and D. Park, Appl. Phys. Lett., 2003, 82, 2145-2147.
    • Lett., 2010, 97, 124107-124103.
    • Y. W. Fan, B. R. Goldsmith and P. G. Collins, Nature Mater., 2005, 4, 906- 911.
    • T. M. Day, P. R. Unwin and J. V. Macpherson, Nano Lett., 2007, 7, 51-57.
    • A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley and Sons, New York, 2001.
    • H. S. White, J. Leddy and A. J. Bard, J. Am. Chem. Soc., 1982, 104, 4811- 4817.
    • T. J. Davies, S. Ward-Jones, C. E. Banks, J. del Campo, R. Mas, F. X. Munoz and R. G. Compton, J. Electroanal. Chem., 2005, 585, 51-62.
    • T. J. Davies and R. G. Compton, J. Electroanal. Chem., 2005, 585, 63-82.
    • Chem., 2004, 574, 123-152.
    • C. M. A. Brett and A. M. O. Brett, Electrochemistry Principles, Oxford Press, Oxford, 1993.
    • Chem., 1987, 225, 33-48.
    • D. Britz, K. Poulsen and J. Strutwolf, Electrochim. Acta, 2005, 51, 333-339.
    • K. Aoki, K. Tokuda and H. Matsuda, J. Electroanal. Chem., 1987, 225, 19-32.
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | QUANTIF

Cite this article