LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wordley, Claire F.R.; Sankaran, Mahesh; Mudappa, Divya; Altringham, John D. (2015)
Publisher: Elsevier BV
Journal: Biological Conservation
Languages: English
Types: Article
Subjects: Ecology, Evolution, Behavior and Systematics, Nature and Landscape Conservation
To conserve biodiversity it is imperative that we understand how different species respond to land use change, and determine the scales at which habitat changes affect species' persistence. We used habitat suitability models (HSMs) at spatial scales from 100-4000. m to address these concerns for bats in the Western Ghats of India, a biodiversity hotspot of global importance where the habitat requirements of bats are poorly understood. We used acoustic and capture data to build fine scale HSMs for ten species (Hesperoptenus tickelli, Miniopterus fuliginosus, Miniopterus pusillus, Myotis horsfieldii, Pipistrellus ceylonicus, Megaderma spasma, Hipposideros pomona, Rhinolophus beddomei, Rhinolophus indorouxii and Rhinolophus lepidus) in a tea-dominated landscape. Small (100-500. m) scale habitat variables (e.g. percentage tea plantation cover) and distances to habitat features (e.g. distance to water) were the strongest predictors of bat occurrence, likely due to their high mobility, which enables them to exploit even small or isolated foraging areas. Most species showed a positive response to coffee plantations grown under native shade and to forest fragments, but a negative response to more heavily modified tea plantations. Two species were never recorded in tea plantations. This is the first study of bats in tea plantations globally, and the first ecological Old World bat study to combine acoustic and capture data. Our results suggest that although bats respond negatively to tea plantations, tea-dominated landscapes that also contain forest fragments and shade coffee can nevertheless support many bat species.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Akasaka, T., Akasaka, M., Yanagawa, H., 2010. Relative importance of the environmental factors at site and landscape scales for bats along the riparian zone. Landsc. Ecol. Eng. 6, 247-255.
    • Akasaka, T., Akasaka, M., Nakamura, F., 2012. Scale-independent significance of river and riparian zones on three sympatric Myotis species in an agricultural landscape. Biol. Conserv. 145, 15-23.
    • Anand, M.O., Krishnaswamy, J., Kumar, A., Bali, A., 2010. Sustaining biodiversity conservation in human-modified landscapes in the Western Ghats: remnant forests matter. Biol. Conserv. 143, 2363-2374.
    • Bawa, K.S., Karanth, K.U., Kumar, N.S., Rao, M., Das, A., Krishnaswamy, J., 2007. Western Ghats & Sri Lanka biodiversity hotspot. CEPF Report, pp. 1-100.
    • Bellamy, C., Scott, C., Altringham, J., 2013. Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. J. Appl. Ecol. 50, 892-901.
    • Cardillo, M., Mace, G.M., Gittleman, J.L., Purvis, A., 2006. Latent extinction risk and the future battlegrounds of mammal conservation. Proc. Natl. Acad. Sci. U. S. A. 103, 4157-4161.
    • Catullo, G., Masi, M., Falcucci, A., Maiorano, L., Rondinini, C., Boitani, L., 2008. A gap analysis of Southeast Asian mammals based on habitat suitability models. Biol. Conserv. 141, 2730-2744.
    • Cincotta, R.P., Wisnewski, J., Engelman, R., 2000. Human population in the biodiversity hotspots. Nature 404, 990-992.
    • Cosson, J.F., Pons, J.M., Masson, D., 1999. Effects of forest fragmentation on frugivorous and nectarivorous bats in French Guiana. J. Trop. Ecol. 15, 515-534.
    • Daily, G., 2001. Ecological forecasts. Nature 411, 245.
    • Daily, G.C., Ceballos, G., Pacheco, J., Suzán, G., Sánchez-Azofeifa, A., 2003. Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. 17, 1814-1826.
    • Daniels, R.J.R., 2003. Impact of tea cultivation on anurans in the Western Ghats. Curr. Sci. 85, 1415-1422.
    • Dudík, M., Schapire, R.E., Phillips, S.J., 2005. Correcting sample selection bias in maximum entropy density estimation. In: B.S., Weiss, J.P.Y. (Eds.), Advances in Neural Information Processing Systems. MIT Press, Cambridge, Massachusetts, USA, pp. 323-330.
    • Estrada-Villegas, S., Meyer, C.F.J., Kalko, E.K.V., 2010. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biol. Conserv. 143, 597-608.
    • FAOSTAT, 2014. [FAO] Food and agriculture organization of the United Nations. faostat.fao.org.
    • Faria, D., 2006. Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest, Brazil. J. Trop. Ecol. 22, 531-542.
    • Ferraz, G., Russell, G.L., Stouffer, P.C., Bleregaard, R.O., Pimm, S.L., Lovejoy, T.E., 2003. Rates of species loss from Amazonian forest fragments. Proc. Natl. Acad. Sci. U. S. A. 100, 14069-14073.
    • Fielding, A.H., Haworth, P.F., 1995. Testing the generality of bird-habitat models. Conserv. Biol. 9, 1466-1481.
    • Fukui, D., Murakami, M., Nakano, S., Aoi, T., 2006. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75, 1252-1258.
    • Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Bradshaw, C.J.A., Laurance, W.F., Lovejoy, T.E., Sodhi, N.S., 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378-381.
    • Gorresen, P.M., Willig, M.R., Strauss, R.E., 2005. Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecol. Appl. 15, 2126-2136.
    • Graf, S., 2010. Diversity and Habitat Use of Understorey Bats in Forest and Agroforestry Systems at the Margin of Lore Lindu National Park (Central Sulawesi, Indonesia) (PhD thesis) Universitat Wein.
    • Hahn, M.B., Epstein, J.H., Gurley, E.S., Islam, M.S., Luby, S.P., Daszak, P., Patz, J.A., 2014. Roosting behaviour and habitat selection of Pteropus giganteus reveal potential links to Nipah virus epidemiology. J. Appl. Ecol. 51, 376-387.
    • Harvey, C.A., Villalobos, J.A.G., 2007. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers. Conserv. 16, 2257-2292.
    • Heller, K.G., Volleth, M., 1995. Community structure and evolution of insectivorous bats in the Palaeotropics and Neotropics. J. Trop. Ecol. 11, 429-442.
    • Henry, M., Cosson, J.F., Pons, J.M., 2010. Modelling multi-scale spatial variation in species richness from abundance data in a complex Neotropical bat assemblage. Ecol. Model. 221, 2018-2027.
    • Hughes, A.C., Satasook, C., Bates, P.J.J., Bumrungsri, S., Jones, G., 2012. The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Glob. Chang. Biol. 18, 1854-1865.
    • Kunz, T.H., de Torrez, E.B., Bauer, D., Lobova, T., Fleming, T.H., 2011. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1-38.
    • Lamb, J.M., Ralph, T.M.C., Goodman, S.M., Bogdanowicz, W., Fahr, J., Gajewska, M., Bates, P.J.J., Eger, J., Benda, P., Taylor, P.J., 2008. Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. (Chiroptera: Molossidae). Acta Chiropterologica 10, 21-40.
    • Laurance, W.F., Useche, D.C., Rendeiro, J., Kalka, M., Bradshaw, C.J.A., Sloan, S.P., Laurance, S.G., Campbell, M., Abernethy, K., 2012. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290-294.
    • Lee, D.N., Papeş, M., Van den Bussche, R.A., 2012. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One 7, e42466.
    • Levins, R., 1968. Evolution in changing environments. Monographs in Population Biology vol. 2. Princeton University Press, Princeton, New Jersey, USA.
    • Lobo, J.M., Jiménez-Valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145-151.
    • Lookingbill, T.R., Elmore, A.J., Engelhardt, K.A.M., Churchill, J.B., Edward Gates, J., Johnson, J.B., 2010. Influence of wetland networks on bat activity in mixed-use landscapes. Biol. Conserv. 143, 974-983.
    • Lundy, M., Montgomery, I., 2009. Summer habitat associations of bats between riparian landscapes and within riparian areas. Eur. J. Wildl. Res. 56, 385-394.
    • Lundy, M.G., Buckley, D.J., Boston, E.S.M., Scott, D.D., Prodöhl, P.A., Marnell, F., Teeling, E.C., Montgomery, W.I., 2012. Behavioural context of multi-scale species distribution models assessed by radio-tracking. Basic Appl. Ecol. 13, 188-195.
    • Melo, F.P.L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., Tabarelli, M., 2013. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462-468.
    • Mendenhall, C.D., Karp, D.S., Meyer, C.F.J., Hadly, E.A., Daily, G.C., 2014. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213-217.
    • Menon, S., Bawa, K.S., 1997. Applications of geographic information systems, remotesensing, and a landscape ecology approach to biodiversity conservation in the Western Ghats. Curr. Sci. 73, 134-145.
    • Meyer, C.F.J., Kalko, E.K.V., 2008. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35, 1711-1726.
    • Milne, D.J., Fisher, A., Pavey, C.R., 2006. Models of the habitat associations and distributions of insectivorous bats of the top end of the Northern Territory, Australia. Biol. Conserv. 130, 370-385.
    • Molur, S., Singh, M., 2009. Diversity and abundance of bats in different habitats of Coorg Western Ghats, India. Biosystematica 3, 65-90.
    • Mudappa, D., Raman, T.R.S., 2007. Rainforest restoration and wildlife conservation on private lands in the Western Ghats. In: G.S., Rangarajan, M. (Eds.), Making Conservation Work. Permanent Black, Uttaranchal, pp. 210-240.
    • Murali, R., Raman, T.R.S., 2012. Streamside amphibian communities in plantations and a rainforest fragment in the Anamalai Hills, India. J. Threatened Taxa 4, 2849-2856.
    • Norberg, U.M., Rayner, J.M.V., 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 316, 335-427.
    • Ober, H.K., Hayes, J.P., Hall, R., 2008. Influence of vegetation on bat use of riparian areas at multiple scales. J. Wildl. Manag. 72, 396-404.
    • Pardini, R., Faria, D., Accacio, G.M., Laps, R.R., Mariano-Neto, E., Paciencia, M.L.B., Dixo, M., Baumgarten, J., 2009. The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol. Conserv. 142, 1178-1190.
    • Parolo, G., Rossi, G., Ferrarini, A., 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. J. Appl. Ecol. 45, 1410-1418.
    • Pascal, J.P., 1988. Wet Evergreen Forests of the Western Ghats of India: Ecology, Structure, Floristic Composition and Succession. Institute Français de Pondichéry, Pondicherry.
    • Perfecto, I., Vandermeer, J., Wright, A., 2009. Nature's Matrix: Linking Agriculture, Conservation and Food Sovereignty. Earthscan, London (x + 242 pp.).
    • Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259.
    • Pineda, E., Moreno, C., Escobar, F., Halffter, G., 2005. Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conserv. Biol. 19, 400-410.
    • Pinto, N., Keitt, T.H., 2008. Scale-dependent responses to forest cover displayed by frugivore bats. Oikos 117, 1725-1731.
    • Raman, T.R.S., 2001. Impact of fragmentation and plantations on rainforest birds in the Anamalai hills, southern Western Ghats, India. CERC Technical Report, pp. 1-52.
    • Raman, T.R.S., Mudappa, D., Kapoor, V., 2009. Restoring rainforest fragments: survival of mixed-native species seedlings under contrasting site conditions in the Western Ghats, India. Restor. Ecol. 17, 137-147.
    • Schoener, T.W., 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704-726.
    • Senior, P., Butlin, R.K., Altringham, J.D., 2005. Sex and segregation in temperate bats. Proc. R. Soc. B 272, 2467-2473.
    • Sloan, S., Jenkins, C.N., Joppa, L.N., Gaveau, D.L.A., Laurance, W.F., 2014. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12-24.
    • Sridhar, H., Raman, T.R.S., Mudappa, D., 2008. Mammal persistence and abundance in tropical rainforest remnants in the southern Western Ghats, India. Curr. Sci. 94, 748-757.
    • Struebig, M.J., Kingston, T., Zubaid, A., Mohd-Adnan, A., Rossiter, S.J., 2008. Conservation value of forest fragments to Palaeotropical bats. Biol. Conserv. 141, 2112-2126.
    • Struebig, M.J., Kingston, T., Zubaid, A., Le Comber, S.C., Mohd-Adnan, A., Turner, A., Kelly, J., Bozek, M., Rossiter, S.J., 2009. Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biol. Conserv. 142, 2089-2096.
    • Struebig, M.J., Kingston, T., Petit, E.J., Le Comber, S.C., Zubaid, A., Mohd-Adnan, A., Rossiter, S.J., 2011. Parallel declines in species and genetic diversity in tropical forest fragments. Ecol. Lett. 14, 582-590.
    • Struebig, M.J., Wilting, A., Gaveau, D.L.A., Meijaard, E., Smith, R.J., 2015. The Borneo mammal distribution consortium, M. Fischer, K. Metcalfe, and S. Kramer-Schadt. 2015. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372-378.
    • Vandermeer, J., Perfecto, I., 2007. The agricultural matrix and a future paradigm for conservation. Conserv. Biol. 21, 274-277.
    • Veloz, S.D., 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290-2299.
    • Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335-342.
    • Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868-2883.
    • Williams-Guillén, K., Perfecto, I., 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems. PLoS One 6, e16502.
    • Wordley, C.F.R., 2014. Ecology and Conservation of Bat Species in the Western Ghats of India (PhD thesis) University of Leeds.
    • Wordley, C.F.R., Foui, E.K., Mudappa, D., Sankaran, M., Altringham, J.D., 2014. Acoustic identification of bats in the southern Western Ghats, India. Acta Chiropterologica 16, 213-222.
  • No similar publications.

Share - Bookmark

Cite this article