Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kugland, N. L.; Gregori, G.; Bandyopadhyay, S.; Brenner, C. M.; Brown, C. R. D.; Constantin, C.; Glenzer, S. H.; Khattak, F. Y.; Kritcher, A. L.; Niemann, C.; Otten, A.; Pasley, J.; Pelka, A.; Roth, M.; Spindloe, C.; Riley, D. (2009)
Languages: English
Types: Article
Subjects: 3109, 2613, 3104
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • N. L. Kugland,1,2 G. Gregori,3 S. Bandyopadhyay,4 C. M. Brenner,5,4 C. R. D. Brown,6,7 C. Constantin,1 S. H. Glenzer,2 F. Y. Khattak,8 A. L. Kritcher,9,2 C. Niemann,1,2 A. Otten,10 J. Pasley,11,4 A. Pelka,10 M. Roth,10 C. Spindloe,4 and D. Riley12 1Physics Department, University of California-Los Angeles, Los Angeles, California 90095, USA 2Lawrence Livermore National Laboratory, Livermore, California 94550, USA 3Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom 4CLF, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom 5SUPA, Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom 6Imperial College, The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom 7AWE Plc., Aldermaston, Reading RG7 4PR, United Kingdom 8Department of Physics, Kohat University of Science and Technology, Kohat 26000, NWFP, Pakistan 9Nuclear Engineering Department, University of California-Berkeley, Berkeley, California 94709, USA 10Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt, Germany 11Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom 12School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN, United Kingdom Received 17 June 2009; published 17 December 2009
    • 1 N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, and D. Blaschke, Astrophys. J. 683, 1217 2008 .
    • 2 J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 2004 .
    • 3 S. Ichimaru, Rev. Mod. Phys. 54, 1017 1982 .
    • 4 R. W. Lee, S. J. Moon, H. Chung, W. Rozmus, H. A. Baldis, G. Gregori, R. C. Cauble, O. L. Landen, J. S. Wark, A. Ng, S. J. Rose, C. L. Lewis, D. Riley, J. Gauthier, and P. Audebert, J. Opt. Soc. Am. B 20, 770 2003 .
    • 5 U. Zastrau, C. Fortmann, R. R. Faustlin, L. F. Cao, T. Doppner, S. Dusterer, S. H. Glenzer, G. Gregori, T. Laarmann, H. J. Lee, A. Przystawik, P. Radcliffe, H. Reinholz, G. Ropke, R. Thiele, J. Tiggesbaumker, N. X. Truong, S. Toleikis, I. Uschmann, A. Wierling, T. Tschentscher, E. Forster, and R. Redmer, Phys. Rev. E 78, 066406 2008 .
    • 6 S. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625 2009 .
    • 7 H. J. Lee, P. Neumayer, J. Castor, T. Doppner, R. W. Falcone, C. Fortmann, B. A. Hammel, A. L. Kritcher, O. L. Landen, R. W. Lee, D. D. Meyerhofer, D. H. Munro, R. Redmer, S. P. Regan, S. Weber, and S. H. Glenzer, Phys. Rev. Lett. 102, 115001 2009 .
    • 8 S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll, T. Bornath, R. Thiele, V. Schwarz, W. D. Kraeft, and R. Redmer, Phys. Rev. Lett. 98, 065002 2007 .
    • 9 S. H. Glenzer, G. Gregori, R. W. Lee, F. J. Rogers, S. W. Pollaine, and O. L. Landen, Phys. Rev. Lett. 90, 175002 2003 .
    • 10 G. Gregori, S. H. Glenzer, K. B. Fournier, K. M. Campbell, E. L. Dewald, O. S. Jones, J. H. Hammer, S. B. Hansen, R. J. Wallace, and O. L. Landen, Phys. Rev. Lett. 101, 045003 2008 .
    • 11 A. L. Kritcher, P. Neumayer, J. Castor, T. Doppner, R. W. Falcone, O. L. Landen, H. J. Lee, R. W. Lee, E. C. Morse, A. Ng, S. Pollaine, D. Price, and S. H. Glenzer, Science Magazine 322, 69 2008 .
    • 12 R. Thiele, T. Bornath, C. Fortmann, A. Höll, R. Redmer, H. Reinholz, G. Ropke, A. Wierling, S. H. Glenzer, and G. Gregori, Phys. Rev. E 78, 026411 2008 .
    • 13 T. Döppner, O. Landen, H. Lee, P. Neumayer, S. Regan, and S. Glenzer, High Energy Density Phys. 5, 182 2009 .
    • 14 K. Wunsch, J. Vorberger, and D. O. Gericke, Phys. Rev. E 79, 010201 R 2009 .
    • 15 G. Gregori and D. O. Gericke, Phys. Plasmas 16, 056306 2009 .
    • 16 B. Barbrel, M. Koenig, A. Benuzzi-Mounaix, E. Brambrink, C. R. D. Brown, D. O. Gericke, B. Nagler, M. Rabecle Gloahec, D. Riley, C. Spindloe, S. M. Vinko, J. Vorberger, J. Wark, K. Wunsch, and G. Gregori, Phys. Rev. Lett. 102, 165004 2009 .
    • 17 E. García Saiz, G. Gregori, D. O. Gericke, J. Vorberger, B. Barbrel, R. J. Clarke, R. R. Freeman, S. H. Glenzer, F. Y. Khattak, M. Koenig, O. L. Landen, D. Neely, P. Neumayer, M. M. Notley, A. Pelka, D. Price, M. Roth, M. Schollmeier, C. Spindloe, R. L. Weber, L. van Woerkom, K. Wunsch, and D. Riley, Nat. Phys. 4, 940 2008 .
    • 18 G. Gregori, S. H. Glenzer, and O. L. Landen, Phys. Rev. E 74, 026402 2006 .
    • 19 D. Riley, N. C. Woolsey, D. McSherry, I. Weaver, A. Djaoui, and E. Nardi, Phys. Rev. Lett. 84, 1704 2000 .
    • 20 D. Riley, I. Weaver, D. McSherry, M. Dunne, D. Neely, M. Notley, and E. Nardi, Phys. Rev. E 66, 046408 2002 .
    • 21 D. Riley, F. Khattak, E. García Saiz, G. Gregori, S. Bandyopadhyay, M. Notley, D. Neely, D. Chambers, A. Moore, and A. Comley, Laser Part. Beams 25, 465 2007 .
    • 22 S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 1966 .
    • 23 J. MacFarlane, I. Golovkin, and P. Woodruff, J. Quant. Spectrosc. Radiat. Transf. 99, 381 2006 .
    • 24 J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transf. 51, 179 1994 .
    • 25 G. Gregori, A. Ravasio, A. Höll, S. Glenzer, and S. Rose, High Energy Density Phys. 3, 99 2007 .
    • 26 S. Galam and J. Hansen, Phys. Rev. A 14, 816 1976 .
    • 27 A. Ravasio, G. Gregori, A. Benuzzi-Mounaix, J. Daligault, A. Delserieys, A. Y. Faenov, B. Loupias, N. Ozaki, M. Rabecle Gloahec, T. A. Pikuz, D. Riley, and M. Koenig, Phys. Rev. Lett. 99, 135006 2007 .
    • 28 N. Itoh and S. Ichimaru, Phys. Rev. B 22, 1459 1980 .
    • 29 R. C. Gann, S. Chakravarty, and G. V. Chester, Phys. Rev. B 20, 326 1979 .
    • 30 M. Baus and J. Hansen, Phys. Rep. 59, 1 1980 .
    • 31 I. Ross, M. White, J. Boon, D. Craddock, A. Damerell, R. Day, A. Gibson, P. Gottfeldt, D. Nicholas, and C. Reason, IEEE J. Quantum Electron. 17, 1653 1981 .
    • 32 T. H. Bett, C. N. Danson, P. Jinks, D. A. Pepler, I. N. Ross, and R. M. Stevenson, Appl. Opt. 34, 4025 1995 .
    • 33 H. Legall, H. Stiel, V. Arkadiev, and A. A. Bjeoumikhov, Opt. Express 14, 4570 2006 .
    • 34 A. P. Shevelko, I. I. Sobelman, and V. A. Slemzin, Current Russian Research in Optics and Photonics: New Methods and Instruments for Space- and Earth-based Spectroscopy in XUV, UV, IR, and Millimeter Waves SPIE, Russia, 1998 , Vol. 3406, pp. 91-108.
    • 35 M. Urry, G. Gregori, O. Landen, A. Pak, and S. Glenzer, J. Quant. Spectrosc. Radiat. Transf. 99, 636 2006 .
    • 36 A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, Rev. Sci. Instrum. 75, 3747 2004 .
    • 37 A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, Rev. Sci. Instrum. 79, 113102 2008 .
    • 38 I. J. Paterson, R. J. Clarke, N. C. Woolsey, and G. Gregori, Meas. Sci. Technol. 19, 095301 2008 .
    • 39 B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 1993 .
    • 40 R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, Phys. Fluids 31, 3059 1988 .
    • 41 SESAME: The Los Alamos National Laboratory Equation of State Database, edited by S. P. Lyon and J. D. Johnson LANL, New Mexico, 1992 ; Report number LA-UR-92- 3407.
    • 42 J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39, 125 1967 .
    • 43 G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee, and O. L. Landen, Phys. Rev. E 67, 026412 2003 .
    • 44 F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. B 62, 16536 2000 .
    • 45 A. Kritcher, P. Neumayer, M. Urry, H. Robey, C. Niemann, O. Landen, E. Morse, and S. Glenzer, High Energy Density Phys. 3, 156 2007 .
    • 46 H. Kunze and W. Lochte-Holtgreven, Plasma Diagnostics North-Holland, Amsterdam, 1968 .
    • 47 D. B. Boercker and R. M. More, Phys. Rev. A 33, 1859 1986 .
    • 48 J. Hansen and I. McDonald, Theory of Simple Liquids, 3rd ed. Academic, New York, 2006 .
    • 49 G. Gregori, S. H. Glenzer, F. J. Rogers, S. M. Pollaine, O. L. Landen, C. Blancard, G. Faussurier, P. Renaudin, S. Kuhlbrodt, and R. Redmer, 45th Annual Meeting of the APS Division of Plasma Physics AIP, Albuquerque, New Mexico, 2004 , Vol. 11, pp. 2754-2762.
    • 50 C. Markwardt, in Proceedings of ADASS XVIII, Quebec, ASP Conference Series, Vol. 411, edited by D. Bohlender, P. Dowler, and D. Durand Astronomical Society of the Pacific, San Francisco, CA, 2009 , p. 251.
    • 51 D. L. Matthews, E. M. Campbell, N. M. Ceglio, G. Hermes, R. Kauffman, L. Koppel, R. Lee, K. Manes, V. Rupert, V. W. Slivinsky, R. Turner, and F. Ze, J. Appl. Phys. 54, 4260 1983 .
    • 52 R. Kauffman, in Physics of Laser Plasma, Handbook of Plasma Physics, edited by A. Rubenchik and S. Witkowski North-Holland, Amsterdam, 1991 , Vol. 3, p. 111.
    • 53 J. J. MacFarlane, Comparisons of HELIOS simulation results using PROPACEOS and SESAME equations of state www.prismcs.com .
    • 54 D. Waasmaier and A. Kirfel, Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 416 1995 .
    • 55 D. Salzmann, Atomic Physics in Hot Plasmas Oxford University Press, New York, 1998 .
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article