LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Castleton, CWM; Kullgren, J; Hermansson, K (2007)
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1063/1.2800015
We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO2 (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U≈3eV and that the degree of localization reaches a maximum at ∼6eV for LDA+U or at ∼5.5eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80–90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2–0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3–4eV, while the experimental band structure is obtained with U=7–8eV. (For GGA+U the lattice parameters worsen for U>0eV, but the band structure is similar to LDA+U.) The best overall choice is U≈6eV with LDA+U and ≈5.5eV for GGA+U, since the localization is most important, but a consistent choice for both CeO2 and Ce2O3, with and without vacancies, is hard to find.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 J. Kaspar, P. Fornasiero, and M. Graziani, Catal. Today 50, 285 1999 ; A. Trovarelli, Catalysis by Ceria and Related Materials Imperial College Press, London, 2002 .
    • 2 N. Izu, W. Shin, and N. Murayama, Sens. Actuators B 93, 449 2003 ; J. W. Fergus, J. Mater. Sci. 38, 4259 2003 .
    • 3 V. V. Kharton, F. M. B. Marques, and A. Atkinson, Solid State Ionics 174, 135 2004 .
    • 4 W. Kohn and L. Sham, Phys. Rev. 140, A1133 1965 .
    • 5 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 1991 ; A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 1995 ; V. I. Anisimov, F. Aryasetiawan, and A. I. Liechtenstein, J. Phys.: Condens. Matter 9, 767 1997 .
    • 6 S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Phys. Rev. B 71, 041102 R 2005 ; P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, J. Chem. Phys. 125, 034712 2006 .
    • 7 M. Nolan, S. C. Parker, and G. W. Watson, Surf. Sci. 595, 223 2005 ; J. Phys. Chem. 110, 2256 2006 ; Phys. Chem. Chem. Phys. 8, 216 2006 ; Z. Yang, T. K. Woo, and K. Hermansson, J. Chem. Phys. 124, 224704 2006 .
    • 8 M. Nolan, S. Grigoleit, D. C. Sayle, S. C. Parker, and G. W. Watson, Surf. Sci. 576, 217 2005 .
    • 9 S. Fabris, G. Vicario, G. Balducci, S. de Gironcoli, and S. Baroni, J. Phys. Chem. B 109, 22860 2005 .
    • 10 G. Kresse, P. Blaha, J. L. F. Da Silva, and M. V. Ganduglia-Pirovano, Phys. Rev. B 72, 237101 2005 ; S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Phys. Rev. B 72, 237101 2005 ; F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, Science 309, 752 2005 .
    • 11 Y. Jiang, J. B. Adams, and M. van Schlifgaarde, J. Chem. Phys. 123, 064701 2005 .
    • 12 C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Phys. Rev. B 75, 035115 2007 .
    • 13 D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Phys. Rev. B 75, 035109 2007 .
    • 14 J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, Phys. Rev. B 75, 045121 2007 .
    • 15 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 1998 .
    • 16 A. Pfau and K. D. Schierbaum, Surf. Sci. 321, 71 1995 .
    • 17 J. W. Allen, J. Magn. Magn. Mater. 47, 168 1985 .
    • 18 E. Wuilloud, B. Delley, W.-D. Schneider, and Y. Baer, Phys. Rev. Lett. 53, 202 1984 .
    • 19 D. R. Mullins, S. H. Overbury, and D. R. Huntley, Surf. Sci. 409, 307 1998 .
    • 20 D. R. Mullins, P. V. Radulovic, and S. H. Overbury, Surf. Sci. 429, 186 1999 ; M. A. Henderson, C. L. Perkins, M. H. Engelhard, S. Thevuthasan, and C. H. F. Peden, Surf. Sci. 526, 1 2003 .
    • 21 F. Marabelli and P. Wachter, Phys. Rev. B 36, 1238 1987 .
    • 22 C. Chai, S. Yang, Z. Liu, M. Liao, and N. Chen, Chin. Sci. Bull. 48, 1198 2003 .
    • 23 C. W. M. Castleton and K. Hermansson unpublished .
    • 24 N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikasov, B. Johansson, and B. I. Lundqvist, Phys. Rev. B 64, 115108 2001 .
    • 25 H. L. Tuller and A. S. Nowick, J. Phys. Chem. Solids 38, 859 1977 ; I. K. Naik and T. Y. Tien, J. Phys. Chem. Solids 39, 311 1978 ; B. Calès and J. F. Baumard, J. Electrochem. Soc. 131, 2407 1984 ; E. K. Chang and R. N. Blumenthal, J. Solid State Chem. 72, 330 1988 .
    • 26 T. Holstein, Ann. Phys. 8, 325 1959 ; 8, 343 1959 ; L. Friedman and T. Holstein, Ann. Phys. 21, 494 1963 ; D. Emin and T. Holstein, Ann. Phys. 53, 439 1969 .
    • 27 P. W. Anderson, Phys. Rev. 115, 2 1959 ; J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 1963 .
    • 28 H. Tasaki, J. Phys.: Condens. Matter 10, 4353 1998 .
    • 29 P. W. Anderson, Science 235, 1196 1987 ; M. W. Long, C. W. M. Castleton, and C. A. Hayward, J. Phys.: Condens. Matter 6, 481 1994 ; C. W. M. Castleton and M. W. Long, J. Phys.: Condens. Matter 9, 7563 1997 ; T. Hotta, Phys. Rev. B 67, 104428 2003 ; J. Wu et al., Phys. Rev. B 69, 115321 2004 .
    • 30 L. Gerward, J. Staun Olsen, L. Petit, G. Vaitheeswaran, V. Kanchana, and A. Svane, J. Alloys Compd. 400, 56 2005 .
    • 31 L. Gerward and J. S. Olsen, Powder Diffr. 8, 127 1993 .
    • 32 S. Rossignol, F. Gérard, D. Mesnard, C. Kappenstein, and D. Duprez, J. Mater. Chem. 13, 3017 2003 .
    • 33 V. V. Hung, J. Lee, and K. Masuda-Jindo, J. Phys. Chem. Solids 67, 682 2006 .
    • 34 M. Mogensen, T. Lindegaard, U. Rud Hansen, and G. Mogensen, J. Electrochem. Soc. 141, 2122 1994 ; V. Van Hung and J. Lee unpublished , quoted in Ref. 33.
    • 35 A. Nakajima, A. Yoshihara, and M. Ishigama, Phys. Rev. B 50, 13297 1994 .
    • 36 D. A. Andersson private communication .
    • 37 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 1997 ; I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 2002 ; M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 2005 ; F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schonberger, Phys. Rev. B 74, 125106 2006 .
    • 38 A. Fujimori, Phys. Rev. B 28, 2281 1983 ; A. Kontani, and H. Ogasawara, J. Electron Spectrosc. Relat. Phenom. 60, 257 1992 .
    • 39 R. C. Karnatak, J. Alloys Compd. 192, 64 1993 ; S. M. Butorin, D. C. Mancini, J.-H. Guo, N. Wassdahl, and J. Nordgren, J. Alloys Compd. 225, 230 1995 .
    • 40 J. El Fallah, S. Boujana, H. Dexpert, A. Kiennemann, J. Majerus, O. Touret, F. Villain, and F. Le Normand, J. Phys. Chem. 98, 5522 1994 ; L. A. J. Garvie and P. Buseck, J. Phys. Chem. Solids 60, 1943 1999 .
    • 41 P. E. Blöchl, Phys. Rev. B 50, 17953 1994 ; G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 1999 .
    • 42 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 1996 .
    • 43 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 1992 .
    • 44 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 1996 .
    • 45 H. Monkhorst and P. Pack, Phys. Rev. B 13, 5188 1976 .
    • 46 C. W. M. Castleton and S. Mirbt, Phys. Rev. B 70, 195202 2004 ; C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73, 035215 2006 .
    • 47 We sum the “up” and “down” spin components of the highest lying state itself when S = 0 B, but only the up components of the highest two levels when S = 2 B.
    • 48 F. W. Bader, Atoms in Molecules. A Quantum Theory Oxford University Press, Oxford, 1990 .
    • 49 B. Herschend, M. Baudin, and K. Hermansson, Surf. Sci. 599, 173 2005 .
    • 50 201 shells of equal thickness around 0.027 Å have been used Variation with U is small . A 10 shell running average is plotted to smooth out “noise” features originating in the discreteness of the charge density grid in the calculation. Qualitatively, the only change if we use a different shell thickness or different running average is the amount of noise.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article