LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tighe, Christopher James Frederick
Languages: English
Types: Unknown
Subjects:
The transient temperature of solid state power switches is investigated using thermal resistance network modelling and experimental testing. The ability of a heat sink mounted to the top of the device to reduce the transient temperature is assessed. Transient temperatures for heat pulses of up to 100ms are of most interest. The transient temperature distribution inside a typical stack-up of a solid state power switch is characterised. The thermal effects of adding a heat sink to the top of the device are then assessed. A variety of heat sink thicknesses and materials are evaluated. Components of the device stack-up are varied in order to assess their affect on the effectiveness of the heat sink in reducing the device temperature. Thermal networks are successfully applied to model the transient heat conduction inside the stack-ups. This modelling technique allowed a good understanding of the thermal behaviour inside the stack-up and heat sink during the transient period. The concept of using a heat sink to suppress the transient temperature was validated experimentally on two types of solid state power switch.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
    • 2 Overview of Power Electronic Devices and Heat Transfer 7 2.1 Power Electronics Overview . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Breakdown Voltage and Avalanche Breakdown . . . . . . . . . 8 2.2 Power Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Power Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 IGBTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Heat Generation in Power Electronic Devices . . . . . . . . . . . . . . 15 2.3.1 MOSFETs and IGBTs . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Device Failure Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 18
    • 4 Modelling Heat Conduction 98 4.1 Analytical Equations for Unidirectional Transient Heat Conduction . . 99 4.1.1 Isothermal Surface . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1.2 Constant Heat Flux Surface . . . . . . . . . . . . . . . . . . . 100 4.2 The Coefficient of Heat Penetration . . . . . . . . . . . . . . . . . . 101 4.3 Modelling Transient Heat Conduction Problems . . . . . . . . . . . . 103 4.3.1 RC Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.2 Cauer Network Construction . . . . . . . . . . . . . . . . . . 105 4.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Solving Thermal Resistance Networks . . . . . . . . . . . . . . 112 4.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
    • 5 Numerical Modelling of Heat Sinks 122 5.1 Device Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.1 Traditional Device Structure . . . . . . . . . . . . . . . . . . 123
    • [1] S.S. Anandan and V. Ramalingam. Thermal Management of Eletronics: A Review of Literature. Thermal Science, Volume: 12, Pages: 5-26, 2008.
    • [2] N. Mohan, T.M. Undeland, and W.P Robbins. Power Electronics. John Wiley and Sons, 2003.
    • [3] S.M. Sze and K.Ng. Kwok. Physics of Semiconductor Devices. John Wiley and Sons, 2007.
    • [4] D.A. Neamen. An Introduction to Semiconductor Devices. McGraw-Hill, 2006.
    • [11] F. Kreith and M. Bohn. Principles Of Heat Transfer. CL-Engineering, 2000.
    • [12] W.A. Scott. Cooling of Electronic Equipment. John Wiley and Sons, 1974.
    • [13] T. Cader, L.J. Westra, and R.C. Eden. Spray Cooling Thermal Management for Increased Device Reliability. IEEE Transactions on Device and Materials Reliability, Volume: 4, Pages: 605-613, 2004.
    • [14] T. Cader and D. Tilton. Implementing Spray Cooling Thermal Management in High Heat flux Applications. In Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Pages: 699-701, 2004.
    • [15] S. V. Garimella. Advances in Mesoscale Thermal Management Technologies for Microelectronics. Microelectronics Journal, Volume: 37, Pages: 1165-1185. Elsevier Science Publishers B. V., 2006.
    • [16] D.J. Womac, S. Ramadhyani, and F.P. Incropera. Correlating Equations for Impingement Cooling of Small Heat Sources with Single Circular Liquid Jets. Journal of Heat Transfer, Volume: 115, Pages: 106-115, 1993.
    • [17] N.T. Obot, W.J.M. Douglas, and A.S. Mujumdar. Effect of Semi-confinement on Impingment Heat Transfer. In Proceedings of the 7th International Heat Transfer Conference, Pages: 395-400, 1982.
    • [18] S. V. Garimella. Heat Transfer and Flow Fields in Confined Jet Impingement. Annual Review of Heat Transfer, Volume: 11, Pages: 413-494, 2000.
    • [19] S. V. Garimella. Confined and Submerged Liquid Jet Impingement Heat Transfer. ASME Journal of Heat Transfer, Volume: 117, Pages: 871-877, 1995.
    • [20] H.A. El-Sheikh and S.V. Gurimella. Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks. IEEE Transactions on Components and Packaging Technologies, Volume: 23, Pages: 300-308, 2000.
    • [21] J. Wilson and R. Simons. Advances In High-Performance Cooling For Electronics. Electronics Cooling, Volume: November, 2005.
    • [22] D.Y. Lee and K. Vafai. Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications. International Journal of Heat and Mass Transfer, Volume: 42, Pages: 1555-1568, 1999.
    • [23] E.G. Colgan, B. Furman, M. Gaynes, W.S. Graham, N.C. LaBianca, J.H. Magerlein, R.J. Polastre, M.B. Rothwell, R.J. Bezama, R. Choudhary, K.C. Marston, H. Toy, J. Wakil, J.A. Zitz, and R.R. Schmidt. A Practical Implementation of Silicon Microchannel Coolers for High Power Chips. IEEE Transactions on Components and Packaging Technologies, Volume: 30, Pages: 218-225, 2007.
    • [24] S.A. Solovitz, L.D. Stevanovic, and R.A. Beaupre. Micro-channel Thermal Management of High Power Devices. In Proceedings of the 21st Applied Power Electronics Conference and Exposition, 2006.
    • [25] D. Lorenzen, J. Bonhaus, W.R. Fahrner, E. Kaulfersch, E. Worner, P. Koidl, K. Unger, D. Muller, S. Rolke, H. Schmidt, and M. Grellmann. Micro Thermal Management of High-Power Diode Laser Bars. IEEE Transactions on Industrial Electronics, Volume: 48, Pages: 286-297, 2001.
    • [26] A.E. Bergles, V J.H. Lienhard, G.E. Kendall, and P. Griffith. Boiling and Evaporation in Small Diameter Channels. Heat Transfer Engineering, Volume: 24, Pages: 18-40, 2003.
    • [27] J.A. Herbsommer, J. Noquil, C. Bull, and O. Lopez. Novel Thermally Enhanced Power Package. In Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition, Pages: 398-400, 2010.
    • [28] B.C. Charboneau, F. Wang, J.D. van Wyk, D. Boroyevich, Z. Liang, E.P. Scott, and C.W. Tipton. Double-Sided Liquid Cooling for Power Semiconductor Devices using Embedded Power Packaging. In Proceedings of the 40th IAS Annual Meeting Industry Applications Conference, Pages: 1138-1143, 2005.
    • [29] X.C. Ngo, K.D.T. Ngo, and G-Q. Lu. Thermal Design of Power Module to Minimize Peak Transient Temperature. In Proceedings of the International Confe-
    • [30] W.E. Newell. Transient Thermal Analysis of Solid-State Power Devices - Making A Dreaded Process Easy. IEEE Transactions on Industry Applications, Volume: 1A-12, Pages: 405-420, 1976.
    • [39] Y. L. Xu, R. Stout, and D. Billings. Electronic Package Thermal Response Prediction to Power Surge. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Volume: 1, Pages: 366-371, 2000.
    • [40] P. M. Igic, P.A. Mawby, M.S. Towers, and S. Batcup. Thermal Model of Power Semiconductor Devices for Electro-Thermal Circuit Simulations. Pages: 1-6, 2002.
    • [41] M. Ludwig, A. Gaedke, O. Slattery, J. Flannery, and S.C. O'Mathuna. Characterisation of Cooling Curves for Power Device Die Attach using a Transient Cooling Curve Measurement. In Proceedings of the 31st IEEE Annual Power Electronics Specialists Conference, Pages: 1612-1617, 2000.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article