LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hirst, Adam M.; Frame, Fiona M.; Arya, Manit; Maitland, Norman J.; O’Connell, Deborah (2016)
Publisher: Springer Netherlands
Journal: Tumour Biology
Languages: English
Types: Article
Subjects: Review, Low temperature plasma, Combination therapy, Reactive species, Focal therapy, Cancer stem cells, Cancer Research
The field of plasma medicine has seen substantial advances over the last decade, with applications developed for bacterial sterilisation, wound healing and cancer treatment. Low temperature plasmas (LTPs) are particularly suited for medical purposes since they are operated in the laboratory at atmospheric pressure and room temperature, providing a rich source of reactive oxygen and nitrogen species (RONS). A great deal of research has been conducted into the role of reactive species in both the growth and treatment of cancer, where long-established radio- and chemo-therapies exploit their ability to induce potent cytopathic effects. In addition to producing a plethora of RONS, LTPs can also create strong electroporative fields. From an application perspective, it has been shown that LTPs can be applied precisely to a small target area. On this basis, LTPs have been proposed as a promising future strategy to accurately and effectively control and eradicate tumours. This review aims to evaluate the current state of the literature in the field of plasma oncology and highlight the potential for the use of LTPs in combination therapy. We also present novel data on the effect of LTPs on cancer stem cells, and speculatively outline how LTPs could circumvent treatment resistance encountered with existing therapeutics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931- 47.
    • 2. Murakami T, Niemi K, Gans T, O'Connell D, Graham WG. Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities. Plasma Sources Sci Technol 2013; 22(1):015003.
    • 3. Stalder KR, McMillen DF, Woloszko J. Electrosurgical plasmas. J Phys D Appl Phys. 2005;38(11):1728-38.
    • 4. Butler-Manuel S, Lippiatt J, Madhuri TK. Interval debulking surgery following neo-adjuvant chemotherapy for stage IVB ovarian cancer using neutral argon plasma (PlasmaJet). Gynecol Oncol. 2014;135(3):622-3.
    • 5. Woloszko J, Stalder KR, Brown IG. Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures. IEEE Trans Plasma Sci. 2002;30(3): 1376-83.
    • 6. Hirst AM, Frame FM, Maitland NJ, O'Connell D. Low temperature plasma: a novel focal therapy for localized prostate cancer? BioMed Res Int. 2014;2014:878319.
    • 7. Weltmann KD, Polak M, Masur K, von Woedtke T, Winter J, Reuter S. Plasma processes and plasma sources in medicine. Contrib Plasma Phys. 2012;52(7):644-54.
    • 8. Kim C-H, Bahn JH, Lee S-H, Kim G-Y, Jun S-I, Lee K, et al. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol. 2010;150(4):530-8.
    • 9. Julák J, Scholtz V. Decontamination of human skin by lowtemperature plasma produced by cometary discharge. Clin Plasma Med. 2013;1(2):31-4.
    • 10. Huang J, Li H, Chen W, Lv G-H, Wang X-Q, Zhang G-P, et al. Dielectric barrier discharge plasma in Ar/O2 promoting apoptosis behavior in A549 cancer cells. Appl Phys Lett. 2011;99(25): 253701.
    • 11. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, et al. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process. 2007;27(2):163-76.
    • 12. Waskoenig J, Niemi K, Knake N, Graham LM, Reuter S, Schulzvon der Gathen V, et al. Atomic oxygen formation in a radiofrequency driven micro-atmospheric pressure plasma jet. Plasma Sources Science and Technology. 2010;19(4):045018.
    • 13. Niemi K, O'Connell D, de Oliveira N, Joyeux D, Nahon L, Booth JP, et al. Absolute atomic oxygen and nitrogen densities in radiofrequency driven atmospheric pressure cold plasmas: synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements. Appl Phys Lett. 2013;103(3):034102.
    • 14. Xu D, Liu D, Wang B, Chen C, Chen Z, Li D, et al. In situ OH generation from O2- and H2O2 plays a critical role in plasmainduced cell death. PLoS One. 2015;10(6):e0128205.
    • 15. Kang SU, Cho JH, Chang JW, Shin YS, Kim KI, Park JK, et al. Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinasedependent mitochondrial reactive oxygen species. Cell Death Dis 2014;5:e1056.
    • 16. Sousa JS, Niemi K, Cox LJ, Algwari QT, Gans T, O'Connell D. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications. J Appl Phys 2011;109(12): 123302-123302-8.
    • 17. Hirst AM, Simms MS, Mann VM, Maitland NJ, O'Connell D, Frame FM. Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer. 2015;112(9):1536-45.
    • 18. Wagenaars E, Gans T, O'Connell D, Niemi K. Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet. Plasma Sources Sci Technol 2012;21(4).
    • 19. Ma Y, Ha CS, Hwang SW, Lee HJ, Kim GC, Lee KW, et al. Nonthermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stressresponse pathways. PLoS One. 2014;9(4):e91947.
    • 20. Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol. 2014;23(1):015019.
    • 21. Hirst D, Robson T. Targeting nitric oxide for cancer therapy. J Pharm Pharmacol. 2007;59(1):3-13.
    • 22. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004;44:239-67.
    • 23. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97-110.
    • 24. Tovmasyan A, Maia CG, Weitner T, Carballal S, Sampaio RS, Lieb D, et al. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med. 2015; 86:308-21.
    • 25. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579-91.
    • 26. Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res. 2012;46(2):147-53.
    • 27. Sangeetha P, Das UN, Koratkar R, Suryaprabha P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med. 1990;8(1):15-9.
    • 28. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3(4):294-300.
    • 29. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 2012;45(26).
    • 30. Chen C, Liu DX, Liu ZC, Yang AJ, Chen HL, Shama G, et al. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem Plasma Process. 2014;34(3):403-41.
    • 31. Babaeva NY, Kushner MJ. Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J Phys D Appl Phys. 2013;46(2):025401.
    • 32. Van Gaens W, Iseni S, Schmidt-Bleker A, Weltmann K, Reuter S, Bogaerts A. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J Phys. 2015;17(3):033003.
    • 33. Hirst AM, Frame FM, Maitland NJ, O'Connell D. Low temperature plasma causes double-strand break DNA damage in primary epithelial cells cultured from a human prostate tumor. IEEE Trans Plasma Sci. 2014;42(10):2740-1.
    • 34. Han X, Klas M, Liu Y, Stack MS, Ptasinska S. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Appl Phys Lett. 2013;102(23):233703.
    • 35. Wende K, Williams P, Dalluge J, Gaens WV, Aboubakr H, Bischof J, et al. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases. 2015;10(2):029518.
    • 36. Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, et al. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014;34(4):941-6.
    • 37. Weiss M, Gumbel D, Hanschmann EM, Mandelkow R, Gelbrich N, Zimmermann U, et al. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 2015;10(7): e0130350.
    • 38. Nakai N, Fujita R, Kawano F, Takahashi K, Ohira T, Shibaguchi T, et al. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma. J Physiol Sci. 2014;64(5):365-75.
    • 39. Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, et al. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNAdamage-triggering sub-G(1) arrest via the ATM/p53 pathway. Arch Biochem Biophys. 2014;545:133-40.
    • 40. Siu A, Volotskova O, Cheng X, Khalsa SS, Bian K, Murad F, et al. Differential effects of cold atmospheric plasma in the treatment of malignant glioma. PLoS One. 2015;10(6):e0126313.
    • 41. Ishaq M, Evans MD, Ostrikov KK. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim Biophys Acta. 2014;1843(12):2827-37.
    • 42. Kaushik N, Kumar N, Kim CH, Kaushik NK, Choi EH. Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma. Plasma Process Polym. 2014;11(12).
    • 43. Gibson AR, McCarthy HO, Ali AA, O'Connell D, Graham WG. Interactions of a non‐thermal atmospheric pressure plasma effluent with PC‐3 prostate cancer cells. Plasma Process Polym. 2014;11(12):1142-9.
    • 44. Arndt S, Wacker E, Li YF, Shimizu T, Thomas HM, Morfill GE, et al. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013;22(4):284-9.
    • 45. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, et al. ROS implication in a new antitumor strategy based on nonthermal plasma. Int J Cancer. 2012;130(9):2185-94.
    • 46. Ishaq M, Kumar S, Varinli H, Han ZJ, Rider AE, Evans MD, et al. Atmospheric gas plasma-induced ROS production activates TNFASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell. 2014;25(9):1523-31.
    • 47. Kaushik N, Uddin N, Sim GB, Hong YJ, Baik KY, Kim CH, et al. Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems. Sci Rep. 2015;5:8587.
    • 48. Robert E, Darny T, Dozias S, Iseni S, Pouvesle JM. New insights on the propagation of pulsed atmospheric plasma streams: from single jet to multi jet arrays. Phys Plasmas. 2015;22(12):122007.
    • 49. Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013;8(9):e73741.
    • 50. Hubenak JR, Zhang Q, Branch CD, Kronowitz SJ. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg. 2014;133(1):49e-56.
    • 51. Vandamme M, Robert E, Doziaz S, Sobilo J, Lerondel S, Le Pape A, et al. Response of human glioma U87 xenografted on mice to non thermal plasma treatment. Plasma Med. 2011;1(1):27-43.
    • 52. Metelmann H.-R, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Weltmann K.-D et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med 2015.
    • 53. Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett. 2015;356(1): 58-71.
    • 54. Graves DB. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clin Plasma Med. 2014;2(2):38-49.
    • 55. Zhang Z, Li W, Procissi D, Tyler P, Omary RA, Larson AC. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation. Nanomedicine. 2014;9(8):1181-92.
    • 56. Valerio M, Dickinson L, Ali A, Ramachandran N, Donaldson I, Freeman A, et al. A prospective development study investigating focal irreversible electroporation in men with localised prostate cancer: Nanoknife Electroporation Ablation Trial (NEAT). Contemp Clin Trials. 2014;39(1):57-65.
    • 57. Wendler JJ, Porsch M, Nitschke S, Kollermann J, Siedentopf S, Pech M, et al. A prospective Phase 2a pilot study investigating focal percutaneous irreversible electroporation (IRE) ablation by NanoKnife in patients with localised renal cell carcinoma (RCC) with delayed interval tumour resection (IRENE trial). Contemp Clin Trials. 2015;43:10-9.
    • 58. Jansky J, Algwari QT, O'Connell D, Bourdon A. Experimentalmodeling study of an atmospheric-pressure helium discharge propagating in a thin dielectric tube. IEEE Trans Plasma Sci. 2012;40(11):2912-9.
    • 59. Babaeva NY, Tian W, Kushner MJ. The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model platelets and cells. J Phys D Appl Phys. 2014;47(23):235201.
    • 60. Goran BS, Ivan BK, Vesna VK, Bratislav MO, Milorad MK. Spatio-temporally resolved electric field measurements in helium plasma jet. J Phys D Appl Phys. 2014;47(10):102001.
    • 61. Begum A, Laroussi M, Pervez MR. Atmospheric pressure He-air plasma jet: breakdown process and propagation phenomenon. AIP Adv. 2013;3(6):062117.
    • 62. Leduc M, Guay D, Leask R, Coulombe S. Cell permeabilization using a non-thermal plasma. New J Phys. 2009;11(11):115021.
    • 63. Lukes P, Zeman J, Horak V, Hoffer P, Pouckova P, Holubova M, et al. In vivo effects of focused shock waves on tumor tissue v i s u a l i z e d b y f l u o r e s c e n c e s t a i n i n g t e c h n i q u e s . Bioelectrochemistry. 2015;103:103-10.
    • 64. Brulle L, Vandamme M, Ries D, Martel E, Robert E, Lerondel S, et al. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One. 2012;7(12):e52653.
    • 65. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 2008;14(10): 2900-8.
    • 66. Koritzer J, Boxhammer V, Schafer A, Shimizu T, Klampfl TG, Li YF, et al. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One. 2013;8(5):e64498.
    • 67. Yang H, Lu R, Xian Y, Gan L, Lu X, Yang X. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line. Phys Plasmas. 2015;22(12): 122006.
    • 68. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev. 2010;62(3):346-61.
    • 69. Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles. Clin Trans Oncol. 2013;15(8):593-601.
    • 70. Sun TM, Wang YC, Wang F, Du JZ, Mao CQ, Sun CY, et al. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials. 2014;35(2): 836-45.
    • 71. Kong M, Keidar M, Ostrikov K. Plasmas meet nanoparticleswhere synergies can advance the frontier of medicine. J Phys D Appl Phys. 2011;44(17):174018.
    • 72. Cheng X, Murphy W, Recek N, Yan D, Cvelbar U, Vesel A, et al. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J Phys D Appl Phys. 2014;47(33):335402.
    • 73. Cheng X, Rajjoub K, Sherman J, Canady J, Recek N, Yan D et al. Cold plasma accelerates the uptake of gold nanoparticles into glioblastoma cells. Plasma Process Polym 2015, n/a-n/a.
    • 74. Choi BB, Kim MS, Song KW, Kim UK, Hong JW, Lee HJ, et al. Targeting NEU protein in melanoma cells with non-thermal atmospheric pressure plasma and gold nanoparticles. J Biomed Nanotechnol. 2015;11(5):900-5.
    • 75. Kim G, Park SR, Kim GC, Lee JK. Targeted cancer treatment using anti-EGFR and -TFR antibody-conjugated gold nanoparticles stimulated by nonthermal air plasma. Plasma Med. 2011;1(1): 45-54.
    • 76. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390(6658):350-1.
    • 77. Gregory CD, Pound JD. Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis. 2010;15(9):1029-49.
    • 78. Teng F, Kong L, Meng X, Yang J, Yu J. Radiotherapy combined with immune checkpoint blockade immunotherapy: achievements and challenges. Cancer Lett. 2015; 365(1):23-9
    • 79. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med. 1998;4(5):581-7.
    • 80. Baust JG, Gage AA. The molecular basis of cryosurgery. BJU Int. 2005;95(9):1187-91.
    • 81. McGahan JP, Gu WZ, Brock JM, Tesluk H, Jones CD. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol. 1996;3(5):418-22.
    • 82. Alkhorayef M, Mahmoud MZ, Alzimami KS, Sulieman A, Fagiri MA. High-intensity focused ultrasound (HIFU) in localized prostate cancer treatment. Pol J Radiol. 2015;80:131-41.
    • 83. Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, et al. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 2003;63(8):1990-3.
    • Sanchez-Ortiz RF, Tannir N, Ahrar K, Wood CG. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: an in situ tumor vaccine? J Urol. 2003;170(1):178-9.
    • Shah TT, Ahmed H, Kanthabalan A, Lau B, Ghei M, Maraj B, et al. Focal cryotherapy of localized prostate cancer: a systematic review of the literature. Expert Rev Anticancer Ther. 2014;14(11): 1337-47.
    • Frey B, Rubner Y, Kulzer L, Werthmoller N, Weiss EM, Fietkau R, et al. Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother. 2014;63(1):29-36.
    • Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE et al. Nivolumab versus docetaxel in advanced nonsquamous nonsmall-cell lung cancer. N Engl J Med 373:1627-1639.
    • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New Engl J Med. 2015;373(1):23-34.
    • Miller V, Lin A, Fridman A, Why target immune cells for plasma treatment of cancer. Plasma Chem Plasma Process. 2015;36(1): 259-268 Harris AL. Hypoxia-a key regulatory factor in tumour growth.
    • Nat Rev Cancer. 2002;2(1):38-47.
    • Luo D, Wang Z, Wu J, Jiang C, Wu J. The role of hypoxia inducible factor-1 in hepatocellular carcinoma. BioMed Res Int.
    • Hypoxia-inducible factor 1alpha in breast cancer prognosis. Clin Chim Acta. 2014;428:32-7.
    • Zhang J, Li L, Lu Y. Effects of hypoxia, surrounding fibroblasts, and p16 expression on breast cancer cell migration and invasion. J Cancer. 2015;6(5):430-7.
    • Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, EggensMeijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett. 2015;359(1):107-16.
    • Gomez-Millan J, Lara MF, Correa Generoso R, Perez-Rozos A, Lupianez-Perez Y, Medina Carmona JA. Advances in the treatment of prostate cancer with radiotherapy. Crit Rev Oncol Hematol. 2015;95(2):144-53 Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 2008;26(17):2862-70.
    • Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756- 60.
    • Huang R, Wang G, Song Y, Tang Q, You Q, Liu Z et al. Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Mol Med Rep. 2015;12(2):2417-24 Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance.
    • Nat Rev cancer. 2005;5(4):275-84.
    • Gorelik E, Lokshin A, Levina V. Lung cancer stem cells as a target for therapy. Anti Cancer Agents Med Chem. 2010;10(2):164-71.
    • Kumazawa S, Kajiyama H, Umezu T, Mizuno M, Suzuki S, Yamamoto E, et al. Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells. J Obstet Gynaecol Res. 2014;40(5):1389-98.
    • Frame FM, Pellacani D, Collins AT, Simms MS, Mann VM, Jones GD, et al. HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br J Cancer. 2013;109(12):3023-33.
    • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239): 780-3.
    • Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946-51.
    • Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004;117(Pt 16):3539-45.
    • Sturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod. 2009;24(1):81-91.
    • Controlling plasma stimulated media in cancer treatment application. Appl Phys Lett. 2014;105(22):224101.
    • Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, et al. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One. 2013;8(12):e81576.
    • Szili EJ, Oh J-S, Hong S-H, Hatta A, Short RD. Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition. J Phys D Appl Phys. 2015;48(20):202001.
    • Robert E, Vandamme M, Brullé L, Lerondel S, Le Pape A, Sarron V, et al. Perspectives of endoscopic plasma applications. Clin Plasma Med. 2013;1(2):8-16.
    • Ahmed HU, Dickinson L, Charman S, Weir S, McCartan N, Hindley R. G et al. Focal ablation targeted to the index lesion in multifocal localised prostate cancer: a prospective development study. Eur Urol. 2015;68(6):927-36 Mala T, Samset E, Aurdal L, Gladhaug I, Edwin B, Soreide O.
    • Marinov I, Guaitella O, Rousseau A, Starikovskaia S. Modes of underwater discharge propagation in a series of nanosecond successive pulses. J Phys D Appl Phys. 2013;46(46):464013.
    • Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process Polym. 2012;9(1):67-76.
    • Kim JY, Ballato J, Foy P, Hawkins T, Wei Y, Li J, et al. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron. 2011;28(1):333-8.
    • Plasma Process Polym 2015, n/a-n/a.
    • Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One. 2014;9(5):e98652.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article