LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Altland, A.; De Martino, A.; Egger, R.; Narozhny, B. (2010)
Languages: English
Types: Article
Subjects: QC, Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Statistical Mechanics
We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time reversed evolutions of physical observables. In many "mesoscopic" transport processes, the effective many-particle dynamics is dominantly classical, while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 C. Bustamante, J. Liphardt and F. Ritort, Physics Today 58, 43 (2005).
    • 2 G.N. Bochkov and Yu.E. Kuzovlev, Zh. Eksp. Teor. Fiz. 76, 1071 (1979) [Sov. Phys. JETP 49, 543 (1979)].
    • 3 G.N. Bochkov and Yu.E. Kuzovlev, Physica 106A, 443 (1981).
    • 4 R.J. Harris and G. Schu¨tz, J. Stat. Mech. P07020 (2007).
    • 5 E.M. Sevick, R. Prabhakar, S.R. Williams, and D.J. Searles, Annu. Rev. Phys. Chem. 59, 603 (2008).
    • 6 U.M.B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Phys. Rep. 461, 111 (2008).
    • 7 M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).
    • 8 L.D. Landau and E.M. Lifshitz, Statistical Physics, Part 1, 3rd edition (Elsevier Butterworth-Heinemann, 1980).
    • 9 C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
    • 10 G.E. Crooks, Phys. Rev. E 60, 2721 (1999).
    • 11 G.E. Crooks, Phys. Rev. E 61, 2361 (2000).
    • 12 D. Andrieux and P. Gaspard, Phys. Rev. Lett. 100, 230404 (2008).
    • 13 M. Campisi, P. Talkner, and P. H¨anggi, Phys. Rev. Lett. 102, 210401 (2009).
    • 14 D.M. Carberry et al., Phys. Rev. Lett. 92, 140601 (2004).
    • 15 V. Blickle, T. Speck, L. Helden, U. Seifert, and C Bechinger, Phys. Rev. Lett. 96, 070603 (2006).
    • 16 J.R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and K. Gawedzki, Phys. Rev. Lett. 103, 040601 (2009).
    • 17 N. Garnier and S. Ciliberto, Phys. Rev. E 71, 060101 (2005).
    • 18 S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, and U. Seifert, Phys. Rev. Lett. 94, 180602 (2005).
    • 19 S. Nakamura et al., Phys. Rev. Lett. 104, 080602 (2010).
    • 20 Y. Utsumi et al., Phys. Rev. B 81, 125331 (2010).
    • 21 R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); G.E. Crooks and C. Jarzynski, Phys. Rev. E 75, 021116 (2007).
    • 22 C. Jarzynski, Phys. Rev. E 73, 046105 (2006).
    • 23 A. Altland, A. De Martino, R. Egger, and B. Narozhny, preprint arXiv:1005.4662v1.
    • 24 M. Vanevic, Yu.V. Nazarov, and W. Belzig, Phys. Rev. Lett. 99, 076601 (2007).
    • 25 A.G. Abanov and D.A. Ivanov, Phys. Rev. Lett. 100, 086602 (2008).
    • 26 J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, Phys. Rev. B 80, 245308 (2009).
    • 27 A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
    • 28 D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, New J. Phys. 11, 043014 (2009).
    • 29 P. Talkner, E. Lutz, and P. H¨anggi, Phys. Rev. E 75, 050102(R) (2007).
    • 30 M. Campisi, P. Talkner, and P. H¨anggi, preprint arXiv:1003.1052v1.
    • 31 M. Campisi, P. Talkner, and P. H¨anggi, preprint arXiv:1006.1542v1.
    • 32 A. Altland and B.D. Simons, Condensed matter field theory, 2nd edition (Cambridge University Press, Cambridge, 2010).
    • 33 Yu.V. Nazarov and Ya.M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, Cambridge, 2009).
    • 34 A. Kamenev, in Nanophysics: Coherence and Transport, Les Houches session LXXXI, edited by H. Bouchiat, Y. Gefen, S. Gu´eron, G. Montambaux, and J. Dalibard (Elsevier, New York, 2005).
    • 35 A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).
    • 36 I.L. Aleiner, P.W. Brouwer, and L.I. Glazman, Phys. Rep. 358, 309 (2002).
    • 37 G. Sch¨on and A.D. Zaikin, Phys. Rep. 198, 237 (1990).
    • 38 A. Altland and R. Egger, Phys. Rev. Lett. 102, 026805 (2009).
    • 39 R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys. 9, 51 (1973).
    • 40 K. Kitahara and H. Metiu, J. Stat. Phys. 15, 141 (1976).
    • 41 P. H¨anggi, Z. Phys. B 31, 407 (1978).
    • 42 S. Pilgram, A.N. Jordan, E.V. Sukhorukov, and M. Bu¨ttiker, Phys. Rev. Lett. 90, 206801 (2003).
    • 43 J. Tobiska and Yu.V. Nazarov, Phys. Rev. B 72, 235328 (2005).
    • 44 L.S. Levitov, H.-W. Lee, and G.B. Lesovik, J. Math. Phys. 37, 4845 (1996).
    • 45 H. F¨orster and M. Bu¨ttiker, Phys. Rev. Lett. 101, 136805 (2008).
    • 46 K. Saito and Y. Utsumi, Phys. Rev. B 78, 115429 (2008).
    • 47 K. Saito and Y. Utsumi, Phys. Rev. B 79, 235311 (2009).
    • 48 S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K. Ensslin, D.C. Driscoll, and A.C. Gossard, Surf. Sci. Rep. 64, 191 (2009).
    • 49 T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, Science 312, 1634 (2006).
    • 50 N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edition (Elsevier, Amsterdam, 2007).
    • 51 A. Kolomeisky and M.E. Fisher, Annu. Rev. Phys. Chem. 58, 675 (2007).
    • 52 T. Schmiedl and U. Seifert, J. Chem. Phys. 126, 044101 (2007).
    • 53 V. Mustonen and M. L¨assig, PNAS 107, 4248 (2010).
    • 54 R. van Zon and E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003).
    • 55 R. van Zon, S. Ciliberto, and E.G.D. Cohen, Phys. Rev. Lett. 92, 130601 (2004).
    • 56 T. Taniguchi and E.G.D. Cohen, J. Stat. Phys. 130, 633 (2007).
    • 57 To keep the notation simple, we omit explicit time arguments whenever possible, nt → n, etc.
    • 58 Yu.V. Nazarov, Ann. Phys. (Leipzig) 16, 720 (2007).
    • 59 P.C. Martin, E.D. Siggia, and H.A. Rose, Phys. Rev. A 8, 423 (1973).
    • 60 H.K. Janssen, Z. Phys. B 23, 377 (1976).
    • 61 C. De Dominicis, J. Phys. (Paris), Colloq. 37, 247 (1976).
    • 62 L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
    • 63 L.F. Cugliandolo, D.S. Dean, and J. Kurchan, Phys. Rev. Lett. 79, 2168 (1997).
    • 64 V.Y. Chernyak, M. Chertkov, and C. Jarzynski, J. Stat. Mech. P08001 (2006).
    • 65 U. Sivan, Y. Imry, and A.G. Aronov, Europhys. Lett. 28, 115 (1994).
    • 66 Ya.M. Blanter, Phys. Rev. B 54, 12807 (1996).
    • 67 B.L. Altshuler, Y. Gefen, A. Kamenev, and L.S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
    • 68 S. Pilgram, Phys. Rev. B 69, 115315 (2004).
    • 69 M. Kindermann and S. Pilgram, Phys. Rev. B 69, 155334 (2004).
    • 70 T.T. Heikkila¨ and Y.V. Nazarov, Phys. Rev. Lett. 102, 130605 (2009).
    • 71 The temperatures Tν∗ in Eq. (4.19) may still depend on the variable n. In a quasi-stationary regime with ∂tn ≈ 0, we have n ≃ n(Vν , Tν ), and a precise FR involving the ∗ effective temperatures Tν can be stated.
    • 72 The slight mismatch between the slopes obtained from numerics and from the FR visible in Fig. 1 is caused by the finite size of the window used for the numerical sampling of Q, which in turn is necessary to have reasonable statistical efficiency.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article