LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ahmed, Abu
Languages: English
Types: Doctoral thesis
Subjects:
Mental-health risk assessment practice in the UK is mainly paper-based, with little standardisation in the tools that are used across the Services. The tools that are available tend to rely on minimal sets of items and unsophisticated scoring methods to identify at-risk individuals. This means the reasoning by which an outcome has been determined remains uncertain. Consequently, there is little provision for: including the patient as an active party in the assessment process, identifying underlying causes of risk, and eecting shared decision-making. This thesis develops a tool-chain for the formulation and deployment of a computerised clinical decision support system for mental-health risk assessment. The resultant tool, GRiST, will be based on consensual domain expert knowledge that will be validated as part of the research, and will incorporate a proven psychological model of classication for risk computation. GRiST will have an ambitious remit of being a platform that can be used over the Internet, by both the clinician and the layperson, in multiple settings, and in the assessment of patients with varying demographics. Flexibility will therefore be a guiding principle in the development of the platform, to the extent that GRiST will present an assessment environment that is tailored to the circumstances in which it nds itself. XML and XSLT will be the key technologies that help deliver this exibility.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 21 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.1.1 Current exigencies in mental-health assessment . . . . . . . . . . . . . . . 23 1.2 Thesis Aims and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    • 2 The Galatean Model of Classi cation 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Classi cation Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Exemplar theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Prototype theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.3 Dual-process theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 The Galatean Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 The Galatean classi cation process . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 The hierarchical Galatean model and its classi cation process . . . . . . . 30
    • 3 Clinical Decision Support Systems 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The Scope of CDSSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 CDSS knowledge representation and architecture . . . . . . . . . . . . . . 38 3.2.2 CDSS domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.3 CDSS contexts and audiences . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Strategic Challenges to CDSS Implementers . . . . . . . . . . . . . . . . . . . . . 42 3.4 The Characteristics of a Good CDSS . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Practices and features yielding positive outcomes . . . . . . . . . . . . . . 43 3.4.2 Practices and in uences reducing CDSS e cacy . . . . . . . . . . . . . . . 47 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
    • 4 Choosing a Representation Format for Domain Knowledge 50 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 The Ubiquity of XML-based Serialisation . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Web Ontology Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 On the Appropriateness of OWL for Developing GRiST . . . . . . . . . . . . . . 53 4.4.1 The maturity of supporting tools . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.2 The OWL le format is complex . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.3 Learning curve of OWL ontology creation tools . . . . . . . . . . . . . . . 55 4.4.4 The dangers of feature overload and restrictions . . . . . . . . . . . . . . 55 4.5 Using XML and XSLT to Produce Flexible Knowledge Representations . . . . . 56 4.6 XSLT Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6.1 XSLT and web Browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6.2 Standalone XSLT processors . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
    • 5 Validation of Mental-health Knowledge Elicited From Experts 60 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 Interviewing of Experts & Mind Map Generation . . . . . . . . . . . . . . . . . . 61 5.2.1 Reviewing of mind maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3 Generic Software and Web Infrastructure for Remote Activities . . . . . . . . . . 64
    • 6 The Structure Tree and its Enrichment 82 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2 Overview of the ST at End of Knowledge Re nement . . . . . . . . . . . . . . . . 83 6.3 Semantics and Organisation of Generic Nodes . . . . . . . . . . . . . . . . . . . . 84 6.3.1 Generic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.2 Generic datums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.3 Direct risk children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.4 Rules governing generic nodes and where they are fully de ned . . . . . . 87 6.4 Question-related Paraphernalia and Data Types . . . . . . . . . . . . . . . . . . . 88 6.4.1 The di erent types of question: question, filter-q attributes . . . . . . 88 6.4.2 Generating rapid screening questions: the layer attribute . . . . . . . . . 89 6.4.3 Data types associated with questions . . . . . . . . . . . . . . . . . . . . . 91 6.5 Representing Membership Grade Pro les . . . . . . . . . . . . . . . . . . . . . . . 96 6.5.1 Collection of preliminary value-mg data . . . . . . . . . . . . . . . . . . . 96
    • 6.6 Flexible Assessments Based on User Expertise Level . . . . . . . . . . . . . . . . 98 6.6.1 Practitioner expertise quantised as levels . . . . . . . . . . . . . . . . . . . 98
    • 6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
    • 7 Representing Relative In uence 103 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 The ST is Not Suitable for Recording RI Information . . . . . . . . . . . . . . . . 104 7.3 Generating the Relative In uence Tree . . . . . . . . . . . . . . . . . . . . . . . . 106 7.3.1 Priming the ST for transformation . . . . . . . . . . . . . . . . . . . . . . 106 7.3.2 RIT generation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.4 RI Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.5 The Galatean Tree Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
    • 10 Further Customisation of GRiST for Di erent Populations and Contexts 164 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.2 The Need for Lateral Customisation . . . . . . . . . . . . . . . . . . . . . . . . . 165 10.2.1 The organisational perspective . . . . . . . . . . . . . . . . . . . . . . . . 165 10.2.2 The clinical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.2.3 The patient perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.3 Rationale for a Super Structure Tree . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.4 Super Structure Tree Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.4.1 The populations attribute . . . . . . . . . . . . . . . . . . . . . . . . . . 169 10.4.2 The enhanced layer and order attributes . . . . . . . . . . . . . . . . . . 169 10.4.3 The SST Enhanced question, filter-q, label and help attributes . . . 170 10.4.4 Inverting value-mgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.4.5 Population-speci c pruning of nodes . . . . . . . . . . . . . . . . . . . . . 171 10.4.6 Adding additional nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.7 Adding new populations to the SST . . . . . . . . . . . . . . . . . . . . . 172
    • 10.5 The SST and its Incorporation into the GTH . . . . . . . . . . . . . . . . . . . . 173
    • 10.6 Fingerprint Reconciliation and the SST . . . . . . . . . . . . . . . . . . . . . . . 174
    • 10.7 Machinery for Generating and Organising STs and Derivative Trees . . . . . . . 174 10.7.1 Computer-assisted tree management . . . . . . . . . . . . . . . . . . . . . 175 10.7.2 GTH Tree Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.7.3 Incorporating amended trees back into the GTH . . . . . . . . . . . . . . 178
    • 10.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
    • 11 Full Deployment within NHS Trusts: A Case Study 181 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.2 Introducing Participating NHS Trusts . . . . . . . . . . . . . . . . . . . . . . . . 181 11.2.1 Holbrook NHS Foundation Trust . . . . . . . . . . . . . . . . . . . . . . . 182 11.2.2 Cradlemere Partnership NHS Foundation Trust . . . . . . . . . . . . . . . 182 11.3 Deployment Considerations Generic to Trusts . . . . . . . . . . . . . . . . . . . . 183 11.3.1 Information governance issues . . . . . . . . . . . . . . . . . . . . . . . . . 183 11.3.2 Database issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.3.3 Interface integration issues . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.4 The Generic Trust Interface to GRiST . . . . . . . . . . . . . . . . . . . . . . . . 185 11.5 Flexibility Through API Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.6 Impact of Electronic GRiST Deployment in Partner Trusts . . . . . . . . . . . . 189 11.7 GRiST Usage Outside Trusts and in the Wider Community . . . . . . . . . . . . 192 11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
    • 12 Conclusions and Future Work 195 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 12.2 Review of Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 12.3 A Flexible Toolchain for Mental-health Assessment and Decision Support . . . . 196 12.4 Bene ts of GRiST's Approach to KE . . . . . . . . . . . . . . . . . . . . . . . . . 199 12.5 Contribution to CDSS Best-practice Theory . . . . . . . . . . . . . . . . . . . . . 201
    • 11.1 A selection of enhancement requests from HTML GRiST users. . . . . . . . . . . 191
    • 9.1 Part of a Level 0 CAT XML representing suicidal ideation. . . . . . . . . . . . . 142
    • 9.2 Part of a Level 1 CAT XML representing suicidal ideation. . . . . . . . . . . . . 142
    • 9.3 The composition of the QT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
    • 9.4 Part of a Level 0 QT XML representing suicidal ideation. . . . . . . . . . . . . . 143
    • 9.5 Part of a Level 1 QT XML representing suicidal ideation. . . . . . . . . . . . . . 144
    • 9.6 Part of an example AT with answers related to some suicidal ideation questions. 144
    • 9.7 The Galatean Tree Hierarchy extended to incorporate CATs and QTs. . . . . . . 146
    • 9.8 An excerpt from the paper-based version of GRiST. . . . . . . . . . . . . . . . . 148
    • 9.9 Back-end processes involved in generating the HTML version of GRiST and reports.151
    • 9.10 GRiST assessment management interface. . . . . . . . . . . . . . . . . . . . . . . 152
    • 9.11 A screenshot of the HTML tool being used to conduct a repeat patient assessment.153
    • 9.12 A hypothetical U-shaped value-mg pro le represented within a scale control. . . 154
    • 9.13 A data validation run being performed as part of the assessment save process. . . 155
    • 9.14 A screenshot of the Java tool being used to conduct a new assessment of a patient.158
    • 9.15 An example report generated from a hypothetical patient assessment. . . . . . . 159
    • 10.1 The Galatean Tree Hierarchy augmented with the prepending of the Super Structure Tree (SST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
    • 10.2 Automatically generating GTH trees from an uploaded SST. . . . . . . . . . . . 176
    • 10.3 An example error report associated with a generated GTH tree. . . . . . . . . . . 177
    • 10.4 Uploading a revised RIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
    • Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based category representation and connectionist learning rules. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18 (2), 211-233.
    • Peleg, M., Boxwala, A., Bernstam, E., Tu, S., Greenes, R., & Shortli e, E. (2001). Sharable representation of clinical guidelines in GLIF: relationship to the Arden Syntax. Journal of Biomedical Informatics , 34 (3), 170{181.
    • Peleg, M., & Tu, S. (2006). Decision support, knowledge representation and management in medicine. Methods Inf Med , 45 (Suppl 1), 72{80.
    • P eeger, S. L., & Atlee, J. M. (2009). Software Engineering: Theory and Practice (4th Edition). NJ: Prentice Hall.
    • Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology , 77 , 353-363.
    • Power, D. (2002). Decision Support Systems: Concepts and Resources for Managers. Westport, CT: Quorum Books.
    • Rogers, A., & Mead, N. (2004). More than technology and access: primary care patients' views on the use and non-use of health information in the Internet age. Health & Social Care in the Community , 12 (2), 102{110.
    • Rollman, B., Hanusa, B., Lowe, H., Gilbert, T., Kapoor, W., & Schulberg, H. (2002). A randomized trial using computerized decision support to improve treatment of major depression in primary care. Journal of General Internal Medicine, 17 (7), 493{503.
    • Ronnau, S., Pauli, C., & Borgho , U. (2008). Merging changes in XML documents using reliable context ngerprints.
    • Schriger, D., Gibbons, P., Langone, C., Lee, S., & Altshuler, L. (2001). Enabling the diagnosis of occult psychiatric illness in the emergency department: A randomized, controlled trial of the computerized, self-administered PRIME-MD Diagnostic System. Annals of emergency medicine, 37 (2), 132{140.
    • Scott, J., Rundall, T., Vogt, T., & Hsu, J. (2005). Kaiser Permanente's experience of implementing an electronic medical record: a qualitative study. British Medical Journal , 331 (7528), 1313{1316.
    • Scott, M. (2009). Simply E ective Cognitive Behaviour Therapy: A Practitioner's Guide. New York, NY: Routledge.
    • Seibel, P. (2005). Practical common lisp. Berkeley, California: Apress.
    • Siau, K., & Tan, X. (2005). Improving the quality of conceptual modelling using cognitive mapping techniques. Data & Knowledge Engineering , 55 , 343-365.
    • Sim, I., Gorman, P., Greenes, R., Haynes, R., Kaplan, B., Lehmann, H., et al. (2001). Clinical decision support systems for the practice of evidence-based medicine. Journal of the American Medical Informatics Association , 8 (6), 527.
    • Simon, S., Kaushal, R., Cleary, P., Jenter, C., Volk, L., Orav, E., et al. (2007). Physicians and electronic health records: a statewide survey. Archives of internal medicine, 167 (5), 507. (page 43)
    • Singleton, N., Bumpstead, R., Lee, A., & Meltzer, H. (2003). Psychiatric morbidity among adults living in private households, 2000. International Review of Psychiatry , 15 (1), 65{ 73.
    • Sittig, D., Wright, A., Oshero , J., Middleton, B., Teich, J., Ash, J., et al. (2008). Grand challenges in clinical decision support. Journal of Biomedical Informatics , 41 (2), 387{392.
    • Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: the early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition , 24 , 1411-1430.
    • Smith, J. D., & Minda, J. P. (2000). Thirty categorization results in search of a model. Journal of Experimental Psychology: Learning, Memory, and Cognition , 26 , 3-27.
    • Spackman, K., Campbell, K., C^ote, R., et al. (1997). SNOMED RT: a reference terminology for health care. In Proceedings of the amia annual fall symposium (p. 640).
    • Stallings, W. (2009). Operating systems : Internals and design principles. Upper Saddle River NJ.
    • Stewart, A., Lawrence, A., & Edwards, D. (2010). Uptake of Decision Support Systems in the Forestry Sector in Great Britain (Tech. Rep.). Forestry Commission. Available from http://www.forestry.gov.uk/pdf/Uptake of DSS Scoping Report Sept2010.p% df/$FILE/Uptake of DSS Scoping Report Sept2010.pdf
    • Tamblyn, R., Huang, A., Perreault, R., Jacques, A., Roy, D., Hanley, J., et al. (2003). The medical o ce of the 21st century (MOXXI): e ectiveness of computerized decision-making support in reducing inappropriate prescribing in primary care. CMAJ: Canadian Medical Association Journal , 169 (6), 549{556.
    • Tomic, B., Jovanovic, J., & Devedzic, V. (2006). Javadon: an open-source expert system shell. Expert Systems with Applications , 31 , 595-606.
    • Trivedi, M., Daly, E., Kern, J., Grannemann, B., Sunderajan, P., & Claassen, C. (2009). Barriers to implementation of a computerized decision support system for depression: an observational report on lessons learned in" real world" clinical settings. BMC Medical Informatics and Decision Making , 9 (1), 6.
    • Watts, D., Bindman, J., Slade, M., Holloway, F., Rosen, A., & Thornicroft, G. (2004). Clinical assessment of risk decision support (CARDS): The development and evaluation of a feasible violence risk assessment for routine psychiatric practice. Journal of Mental Health, 13 (6), 569-581.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    54
    54%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article