LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Saffin, L.; Methven, J.; Gray, S. L. (2016)
Publisher: Wiley
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.2729
Numerical models of the atmosphere combine a dynamical core, which approximates solutions to the adiabatic, frictionless governing equations for fluid dynamics, with tendencies arising from the parametrization of other physical processes. Since potential vorticity (PV) is conserved following fluid flow in adiabatic, frictionless circumstances, it is possible to isolate the effects of non-conservative processes by accumulating PV changes in an air-mass relative framework. This “PV tracer technique” is used to accumulate separately the effects on PV of each of the different non-conservative processes represented in a numerical model of the atmosphere. Dynamical cores are not exactly conservative because they introduce, explicitly or implicitly, some level of dissipation and adjustment of prognostic model variables which acts to modify PV. Here, the PV tracers technique is extended to diagnose the cumulative effect of the non-conservation of PV by a dynamical core and its characteristics relative to the PV modification by parametrized physical processes.\ud \ud Quantification using the Met Office Unified Model reveals that the magnitude of the non-conservation of PV by the dynamical core is comparable to those from physical processes. Moreover, the residual of the PV budget, when tracing the effects of the dynamical core and physical processes, is at least an order of magnitude smaller than the PV tracers associated with the most active physical processes. The implication of this work is that the non-conservation of PV by a dynamical core can be assessed in case studies with a full suite of physics parametrizations and directly compared with the PV modification by parametrized physical processes. The nonconservation of PV by the dynamical core is shown to move the position of the extratropical tropopause while the parametrized physical processes have a lesser effect at the tropopause level.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Chagnon JM, Gray SL. 2015. A diabatically generated potential vorticity structure near the extratropical tropopause in three simulated extratropical cyclones. Mon. Weather Rev. 143: 2337-2347, doi: 10.1175/MWR-D-14- 00092.1.
    • Chagnon JM, Gray SL, Methven J. 2013. Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Q. J. R. Meteorol. Soc. 139: 1270-1282, doi: 10.1002/qj.2037.
    • Charney J. 1955. The use of the primitive equations of motion in numerical prediction. Tellus 7: 22-26, doi: 10.1111/j.153-3490.1955.tb01138.x.
    • Davies T. 2013. Lateral boundary conditions for limited-area models. Q. J. R. Meteorol. Soc. 140: 185 - 196, doi: 10.1002/qj.2127.
    • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131: 1759 - 1782, doi: 10.1256/qj.04.101.
    • Davis CA, Emanuel KA. 1991. Potential vorticity diagnostics of cyclogenesis. Mon. Weather Rev. 119: 1929 - 1953.
    • Davis CA, Stoelinga MT, Kuo YH. 1993. The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Weather Rev. 121: 2309 - 2330.
    • Davis CA, Grell ED, Shapiro MA. 1996. The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Weather Rev. 124: 3 - 26.
    • Dearden C, Connolly PJ, Lloyd G, Crosier J, Bower KN, Choularton TW, Vaughan G. 2014. Diabatic heating and cooling rates derived from insitu microphysics measurements: A case study of a wintertime UK cold front. Mon. Weather Rev. 142: 3100 - 3125, doi: 10.1175/MWR-D-14- 00048.1.
    • Diamantakis M, Davies T, Wood N. 2007. An iterative time-stepping scheme for the Met Office's semi-implicit semi-Lagrangian non-hydrostatic model. Q. J. R. Meteorol. Soc. 133: 997 - 1011, doi: 10.1002/qj.59.
    • Edwards JM, Slingo A. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122: 689 - 719, doi: 10.1002/qj.49712253107.
    • Ertel H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Meteorol. Z. 59: 277 - 281.
    • Gray SL. 2006. Mechanisms of midlatitude cross-tropopause transport using a potential vorticity budget approach. J. Geophys. Res. 111: D17 113, doi: 10.1029/2005JD006259.
    • Gray SL, Dunning CM, Methven J, Masato G, Chagnon JM. 2014. Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett. 41: 2979 - 2987, doi: 10.1002/2014GL059282.
    • Gregory D, Rowntree PR. 1990. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Weather Rev. 118: 1483 - 1506.
    • Haynes PH, McIntyre ME. 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44: 828 - 841.
    • Haynes PH, McIntyre ME. 1990. On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci. 47: 2021 - 2031.
    • Hoskins BJ, McIntyre ME, Robertson AW. 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111: 877 - 946, doi: 10.1002/qj.49711147002.
    • Kunkel D, Hoor P, Wirth V. 2014. Can inertia-gravity waves persistently alter the tropopause inversion layer? Geophys. Res. Lett. 41: 7822 - 7829, doi: 10.1002/2014GL061970.
    • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB. 2000. A new boundarylayer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Weather Rev. 128: 3187 - 3199.
    • McIntyre ME, Norton WA. 2000. Potential vorticity inversion on a hemisphere. J. Atmos. Sci. 57: 1214 - 1235.
    • Martnez-Alvarado O, Plant RS. 2014. Parametrized diabatic processes in numerical simulations of an extratropical cyclone. Q. J. R. Meteorol. Soc. 140: 1742 - 1755, doi: 10.1002/qj.2254.
    • Reed RJ. 1955. A study of a characteristic type of upper-level frontogenesis. J. Meteorol. 12: 226 - 237.
    • Scaife AA, Butchart N, Warner CD, Swinbank R. 2002. Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office unified model. J. Atmos. Sci. 59: 1473 - 1489.
    • Sprenger M, Wernli H. 2015. The LAGRANTO Lagrangian analysis tool - version 2.0. Geosci. Model Dev. 8: 2569 - 2586, doi: 10.5194/gmdd-8- 1893-2015.
    • Stoelinga MT. 1996. A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Weather Rev. 124: 849 - 874.
    • Vaughan G, Methven J, Anderson D, Antonescu B, Baker L, Baker TP, Ballard SP, Bower KN, Brown PRA, Chagnon J, Choularton TW, Chylik J, Connolly PJ, Cook PA, Cotton RJ, Crosier J, Dearden C, Dorsey JR, Frame THA, Gallagher MW, Goodliff M, Gray SL, Harvey BJ, Knippertz P, Lean HW, Li D, Lloyd G, Mart´ınez-Alvarado O, Nicol J, Norris J, O¨ stro¨m E, Owen J, Parker DJ, Plant RS, Renfrew IA, Roberts NM, Rosenberg P, Rudd AC, Schultz DM, Taylor JP, Trzeciak T, Tubbs R, Vance AK, van Leeuwen PJ, Wellpott A, Woolley A. 2015. Cloud banding and winds in intense European cyclones: Results from the DIAMET project. Bull. Am. Meteorol. Soc. 96: 249 - 265, doi: 10.1175/BAMS-D-13-00238.1.
    • Visram AR, Cotter CJ, Cullen MJP. 2014. A framework for evaluating model error using asymptotic convergence in the Eady model. Q. J. R. Meteorol. Soc. 140: 1629 - 1639, doi: 10.1002/qj.2244.
    • Webster S, Brown AR, Cameron DR, Jones CP. 2003. Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 129: 1989 - 2010, doi: 10.1256/qj.02.133.
    • Wernli H, Davies HC. 1997. A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Q. J. R. Meteorol. Soc. 123: 467 - 489, doi: 10.1002/qj.49712353811.
    • Whitehead JP, Jablonowski C, Kent J, Rood RB. 2015. Potential vorticity: measuring consistency between GCM dynamical cores and tracer advection schemes. Q. J. R. Meteorol. Soc. 141: 739 - 751, doi: 10.1002/qj.2389.
    • Wilson DR, Ballard SP. 1999. A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc. 125: 1607 - 1636, doi: 10.1002/qj.49712555707.
    • Zhang K, Wan H, Wang B, Zhang M. 2008. Consistency problem with tracer advection in the atmospheric model GAMIL. Adv. Atmos. Sci. 25: 306 - 318, doi: 10.1007/s00376-008-0306-z.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article