Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Halliday, Ian; Lishchuk, Sergey; Pontrelli, G.; Evans, P. C
Publisher: American Physical Society
Languages: English
Types: Article
We present a method for applying a class of velocity-dependant forces within a multi-component lattice Boltzmann equation simulation which is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multi-component lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically\ud appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods (e.g. T. Krüger, S, Frijters, F. Günther, B. Kaoui and J. Harting, Eur.\ud Phys. J. 222, 177 (2013)) ) and underscore the importance of a correct vesicle membrane condition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] D. McDonald, W. W. Nichols, M. F. O'Rourke and C. Vlachopoulos, McDonalds Blood Flow in Arteries, Theoretical, Experimental and Clinical Principles, Ed 6, CRC press (2011)
    • [2] C. S. Peskin, J. Comput. Phys. 25, 220 (1977).
    • [3] J. M. Skotheim and T. W. Secomb, Phys. Rev. Lett. 98, 078301 (2007).
    • [4] T. W. Secomb, R. Hsu, and A. R. Pries, Microcirculation 9, 189 (2002).
    • [5] B. Kaoui, G. Biros, and C. Misbah, Phys. Rev. Lett. 103, 188101 (2009).
    • [6] B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah, and W. Zimmermann, Phys. Rev. E 77, 021903 (2008), and references therein.
    • [7] B. Kaoui, J. Harting, and C. Misbah, Phys. Rev. E 83, 066319 (2011).
    • [8] J. Zhang, P. C. Johnson, and A. S. Popel, Phys. Biol. 4, 285 (2007).
    • [9] T. Kru¨ger, F. Varnik, and D. Raabe, Comp. Math. Appl. 61, 3485 (2011).
    • [10] I. Halliday, S. V. Lishchuk, T. J. Spencer, G. Pontrelli and C. M. Care Phys. Rev. E. 87, 023307 (2013).
    • [11] M. M. Dupin, I. Halliday and C. M. Care, Medical Engineering and Physics 28 13 (2006).
    • [12] M. M. Dupin, I. Halliday and C. M. Care, Phil. Trans. Roy. Soc. A. 362, 1775 (2004).
    • [13] V. Bennett and D. M. Gilligan, Ann. Rev. Cell. Biol. 9 27 (1993)
    • [14] R. Skalak et. al., Biophysics. J. 13 245 (1973)
    • [15] T. M. Fischer, Biophysics. J. 86 3304 (2004)
    • [16] S. V. Lishchuk, C. M. Care and I. Halliday, Phys. Rev. E 67(3), 036701(2), (2003).
    • [17] I. Halliday, A. P. Hollis and C. M. Care, Phys. Rev. E, 76 026708 (2007).
    • [18] U. D'Ortona, D. Salin, M. Cieplak, R. B. Rybka and J. R. Banavar Phys. Rev. E 51, 3718 (1995)
    • [19] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (2000) ISBN : 9780521794503
    • [20] D. Salac and M. J. Miksis, J. Fluid Mech 711 pp122 (2012)
    • [21] B. Kaoui, T. Kru¨ger, and J. Harting, Soft Matter 8, 9246 (2012)
    • [22] B. Kaoui and J. Harting, Rheologica Acta 55 (6) pp465 (2015)
    • [23] X. He, S. Chen and G. D. Doolen, J. Comp. Phys. 146 282 (1998).
    • [24] Z. Guo, C. Zheng and B. Shi, Phys. Rev. E, Vol 65 046308 (2002).
    • [25] Y. H. Qian, D. d'Humi`eres and P. Lallemand, Europhys. Lett. 17, 479 (1992).
    • [26] Z. Guo and T. S. Zhao, Phys. Rev. E. 66, 036304 (2002)
    • [27] J. Beaucourt, F. Rioual, T. S´eon, T. Biben and C. Misbah, Phys. Rev. E, 69, 011906 (2004)
    • [28] P. Nithiarasu and K. Ravindran, Comput. Methods. Appl. Mech. Eng., 165 147 (1998).
    • [29] S. Succi, The lattice Boltzmann Equation for Fluid Mechanics and Beyond, Clarendon Press (2001).
    • [30] T. Kru¨ger, S, Frijters, F. Gu¨nther, B. Kaoui and J. Harting, Eur. Phys. J. 222, 177 (2013).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article