LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ashton, Thomas E.; Hevia-Borras, David; Iadecola, Antonella; Wiaderek, Kamila M.; Chupas, Peter J.; Chapman, Karena W.; Corr, Serena A. (2015)
Publisher: Wiley for International Union of Crystallography
Languages: English
Types: Article
Subjects:
Understanding how intercalation materials change during electrochemical operation is paramount to optimizing their behaviour and function and in situ characterization methods allow us to observe these changes without sample destruction. Here we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave-assisted route which exhibits a larger electrochemical capacity (232 mAh g-1) compared with VO2 (B) prepared by a solvothermal route (197 mAh g-1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arbizzani, C., Beninati, S., Damen, L. & Mastragostino, M. (2007). Solid State Ionics, 178, 393-398.
    • Armstrong, G., Canales, J., Armstrong, A. R. & Bruce, P. G. (2008). J. Power Sources, 178, 723-728.
    • Ashton, T. E., Laveda, J. V., MacLaren, D. A., Baker, P. J., Porch, A., Jones, M. O. & Corr, S. A. (2014). J. Mater. Chem. A, 2, 6238-6245.
    • Beninati, S., Fantuzzi, M., Mastragostino, M. & Soavi, F. (2006). J. Power Sources, 157, 483-487.
    • Borkiewicz, O. J., Shyam, B., Wiaderek, K. M., Kurtz, C., Chupas, P. J. & Chapman, K. W. (2012). J. Appl. Cryst. 45, 1261-1269.
    • Bruce, P. G., Scrosati, B. & Tarascon, J.-M. (2008). Angew. Chem. Int. Ed. 47, 2930-2946.
    • Cao, A. M., Hu, J. S., Liang, H. P. & Wan, L. J. (2005). Angew. Chem. Int. Ed. 44, 4391-4395.
    • Corr, S. A., Grossman, M., Shi, Y. F., Heier, K. R., Stucky, G. D. & Seshadri, R. (2009). J. Mater. Chem. 19, 4362-4367.
    • Goodenough, J. B. & Kim, Y. (2010). Chem. Mater. 22, 587-603.
    • Kong, F. Y., Li, M., Yao, X. Y., Xu, J. M., Wang, A. D., Liu, Z. P. & Li, G. H. (2012). CrystEngComm, 14, 3858-3861.
    • Lampe-O¨ nnerud, C., Nordblad, P. & Thomas, J. O. (1995). Solid State Ionics, 81, 189-199.
    • Li, J. M., Chang, K. H., Wu, T. H. & Hu, C. C. (2013). J. Power Sources, 224, 59-65.
    • Li, L., Liu, P., Zhu, K., Wang, J., Liu, J. & Qiu, J. (2015). J. Mater. Chem. A, 3, 9385-9389.
    • Li, H. & Zhou, H. (2012). Chem. Commun. 48, 1201-1217.
    • Liu, H. M., Wang, Y. G., Wang, K. X., Wang, Y. R. & Zhou, H. S. (2009). J. Power Sources, 192, 668-673.
    • Mai, L. Q., Wei, Q. L., An, Q. Y., Tian, X. C., Zhao, Y. L., Xu, X., Xu, L., Chang, L. & Zhang, Q. J. (2013). Adv. Mater. 25, 2969-2973.
    • Masquelier, C. & Croguennec, L. (2013). Chem. Rev. 113, 6552-6591.
    • Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. (1980). Mater. Res. Bull. 15, 783-789.
    • Niu, C. J., Meng, J. S., Han, C. H., Zhao, K. N., Yan, M. Y. & Mai, L. Q. (2014). Nano Lett. 14, 2873-2878.
    • Oka, Y., Yao, T., Yamamoto, N., Ueda, Y. & Hayashi, A. (1993). J. Solid State Chem. 105, 271-278.
    • Pan, A. Q., Wu, H. B., Yu, L. & Lou, X. W. (2013). Angew. Chem. Int. Ed. 52, 2226-2230.
    • Prado-Gonjal, J., Molero-Sa´ nchez, B., A´vila-Brande, D., Mora´ n, E., Pe´ rez-Flores, J. C., Kuhn, A. & Garc´ıa-Alvarado, F. (2013). J. Power Sources, 232, 173-180.
    • Qin, M. L., Liang, Q., Pan, A. Q., Liang, S. Q., Zhang, Q., Tang, Y. & Tan, X. P. (2014). J. Power Sources, 268, 700-705.
    • Rangappa, D., Murukanahally, K. D., Tomai, T., Unemoto, A. & Honma, I. (2012). Nano Lett. 12, 1146-1151.
    • Ravel, B. & Newville, M. (2005). J. Synchrotron Rad. 12, 537-541.
    • Subramanian, V., Chen, C. L., Chou, H. S. & Fey, G. T. K. (2001). J. Mater. Chem. 11, 3348-3353.
    • Tsang, C. & Manthiram, A. (1997). J. Electrochem. Soc. 144, 520- 524.
    • Wong, J., Lytle, F. W., Messmer, R. P. & Maylotte, D. H. (1984). Phys. Rev. B, 30, 5596-5610.
    • Wu, Z. Y., Xian, D. C., Hu, T. D., Xie, Y. N., Tao, Y., Natoli, C. R., Paris, E. & Marcelli, A. (2004). Phys. Rev. B, 70, 033104.
    • Yoon, W. S., Grey, C. P., Balasubramanian, M., Yang, X. Q. & McBreen, J. (2003). Chem. Mater. 15, 3161-3169.
    • Zeng, G., Caputo, R., Carriazo, D., Luo, L. & Niederberger, M. (2013). Chem. Mater. 25, 3399-3407.
    • Zhang, M. J. & Dahn, J. R. (1996). J. Electrochem. Soc. 143, 2730- 2735.
    • Zhang, L., Zhao, K. N., Xu, W. W., Meng, J. S., He, L., An, Q. Y., Xu, X., Luo, Y. Z., Zhao, T. W. & Mai, L. Q. (2014). RSC Adv. 4, 33332- 33337.
    • Zou, Z. G., Cheng, H., He, J. Y., Long, F., Wu, Y., Yan, Z. Y. & Chen, H. X. (2014). Electrochim. Acta, 135, 175-180.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

Cite this article