LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Orton, David C.; Makowiecki, Daniel; Roo, Tessa de; Johnstone, Cluny; Harland, Jennifer; Jonsson, Leif; Heinrich, Dirk; Enghoff, Inge Bødker; Lõugas, Lembi; Neer, Wim Van; Ervynck, Anton; Hufthammer, Anne Karin; Amundsen, Colin; Jones, Andrew K. G.; Locker, Alison; Hamilton-Dyer, Sheila; Pope, Peter; MacKenzie, Brian R.; Richards, Michael; O’Connell, Tamsin C.; Barrett, James H. (2011)
Publisher: Public Library of Science
Languages: English
Types: Article
Subjects: Social and Behavioral Sciences, Research Article, Earth Sciences, Fisheries Science, :Agriculture and fishery disciplines: 900::Fisheries science: 920 [VDP], Agriculture, Marine Biology, 2700, Ecology, Marine and Aquatic Sciences, Archaeometry, Animals, Archaeology, Bone and Bones, Carbon Isotopes, Europe, Fisheries, Gadus morhua, History, 15th Century, History, 16th Century, History, 17th Century, History, 18th Century, History, Medieval, Nitrogen Isotopes, Oceans and Seas, Isotopes, Ichthyology, Historical Archaeology, Archaeology, Chemistry, Radioactive Carbon Dating, Mariculture, Biology, Medicine, Biogeochemistry, Marine Ecology, Q, Aquaculture, R, 1300, Science, 1100, Zoology, Radiochemistry
Although recent historical ecology studies have extended quantitative knowledge of eastern Baltic cod (Gadus morhua) exploitation back as far as the 16th century, the historical origin of the modern fishery remains obscure. Widespread archaeological evidence for cod consumption around the eastern Baltic littoral emerges around the 13th century, three centuries before systematic documentation, but it is not clear whether this represents (1) development of a substantial eastern Baltic cod fishery, or (2) large-scale importation of preserved cod from elsewhere. To distinguish between these hypotheses we use stable carbon and nitrogen isotope analysis to determine likely catch regions of 74 cod vertebrae and cleithra from 19 Baltic archaeological sites dated from the 8th to the 16th centuries. δ¹³C and δ¹⁵N signatures for six possible catch regions were established using a larger sample of archaeological cod cranial bones (n = 249). The data strongly support the second hypothesis, revealing widespread importation of cod during the 13th to 14th centuries, most of it probably from Arctic Norway. By the 15th century, however, eastern Baltic cod dominate within our sample, indicating the development of a substantial late medieval fishery. Potential human impact on cod stocks in the eastern Baltic must thus be taken into account for at least the last 600 years. The research was funded by the Leverhulme Trust (grant no. F/00 224/S), the History of Marine Animal Populations project (supported by the Alfred P. Sloan Foundation) and the McDonald Institute for Archaeological Research.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. MacKenzie BR, Alheit J, Conley DJ, Holm P, Kinze CC (2002) Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences 59: 173-190.
    • 2. Eero M, MacKenzie BR, Karlsdo´ttir HM, Gaumiga R (2007) Development of international fisheries for the eastern Baltic cod (Gadus morhua) from the late 1880s until 1938. Fisheries Research 87: 155-166.
    • 3. Eero M, Ko¨ster FW, MacKenzie BR (2008) Reconstructing historical stock development of Atlantic cod (Gadus morhua) in the eastern Baltic Sea before the beginning of intensive exploitation. Canadian Journal of Fisheries and Aquatic Sciences 65: 2728-2741.
    • 4. Eero M, MacKenzie BR, Ko¨ster FW, Gislason H (2011) Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate. Ecological Applications 21: 214-226.
    • 5. Limburg KE, Walther Y, Hong B, Olson C, Stora˚ J (2008) Prehistoric versus modern Baltic Sea cod fisheries: selectivity across the millennia. Proceedings of the Royal Society B: Biological Sciences 275: 2659-2665.
    • 6. MacKenzie BR, Ojaveer H, Eero M (2011) Historical ecology provides new insights for ecosystem management: eastern Baltic cod case study. Marine Policy 35: 266-270.
    • 7. MacKenzie BR, Bager M, Ojaveer H, Awebro K, Heino U, et al. (2007) Multidecadal scale variability in the eastern Baltic cod fishery 1550-1860-Evidence and causes. Fisheries Research 87: 106-119.
    • 8. Nielssen AR (2009) Norwegian fisheries, c.1100-1850. In: Starkey DJ, Tho´r JT, Heidbrink I, eds. A History of the North Atlantic Fisheries Volume 1: from early times to the mid-nineteenth century. Bremen: Verlag H. M. Hauschild. pp 83-122.
    • 9. Enghoff IB (1999) Fishing in the Baltic Region from the 5th century BC to the 16th century AD: evidence from fish bones. Archaeofauna 8: 41-85.
    • 10. Barrett J, Johnstone C, Harland J, Van Neer W, Ervynck A, et al. (2008) Detecting the medieval cod trade: a new method and first results. Journal of Archaeological Science 35: 850-861.
    • 11. Rick TC, Erlandson JM (2008) Human Impacts on Ancient Marine Ecosystems: a global perspective. Berkeley: University of California Press. 336 p.
    • 12. Barrett J, Orton D, Johnstone C, Harland J, Van Neer W, et al. (2011) Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. Journal of Archaeological Science 38: 1516-1524.
    • 13. Barbier EB (2011) Scarcity and Frontiers: how economies have developed through natural resource exploitation. Cambridge: Cambridge University Press. 768 p.
    • 14. ICES (2005) Report of the Baltic Fisheries Assessment Working Group. ICES CM 2005/ACFM:19. Copenhagen: ICES. 626 p.
    • 15. Bagge O, Thurow F, Steffensen E, Bay J (1994) The Baltic cod. Dana 10: 2-28.
    • 16. Berner M, Mu¨ ller H (1989) Discrimination between ''Baltic cod'' (G. morhua callarias L.) and ''Belt Sea cod'' (G. morhua morhua L.) by means of morphometric and meristic characters. ICES CM 1989/J:13. Copenhagen: ICES.
    • 17. Enghoff IB (1994) Fishing in Denmark during the Ertebølle period. International Journal of Osteoarchaeology 4: 65-96.
    • 18. Pickard C, Bonsall C (2004) Deep-Sea Fishing in the European Mesolithic: Fact or Fantasy? European Journal of Archaeology 7: 273-290.
    • 19. Enghoff IB, MacKenzie BR, Nielsen EE (2007) The Danish fish fauna during the warm Atlantic period (ca. 7000-3900 bc): Forerunner of future changes? Fisheries Research 87: 167-180.
    • 20. Kriiska A, Lo˜ugas L (1999) Late Mesolithic and Early Neolithic seasonal settlment at Ko˜pu, Hiiumaa Island, Estonia. In: Miller U, Hackens T, Lang V, Raukas A, Hicks S, eds. Environmental and Cultural History of the Eastern Baltic Region. Rixensart: UNESCO. pp 157-172.
    • 21. Olson C, Walther Y (2007) Neolithic cod (Gadus morhua) and herring (Clupea harengus) fisheries in the Baltic Sea, in the light of fine-mesh sieving: a comparative study of subfossil fishbone from the late Stone Age sites at Ajvide, Gotland, Sweden and Jettbo¨le, A˚land, Finland. Environmental Archaeology 12: 175-185.
    • 22. Olson C (2008) Neolithic Fisheries: osteoarchaeology of fish remains in the Baltic Sea region. Stockholm: Stockholm University. 52 p.
    • 23. Kadakas U, Vedru G, Lo˜ugas L, Hiie S, Kihno K, et al. (2010) Rescue excavations of the Neolithic settlement site in Vabaduse Square, Tallinn. In: Oras E, Russow E, eds. Archaeological Fieldwork in Estonia 2009. Tallinn: Muinsuskaitseamet. pp 27-45.
    • 24. Hatting T (1994) The animal bones from the refuse layer at Lundeborg. Arkaeologiske Studier 10: 94-97.
    • 25. Hatting T (1989) Orientering om knoglematerialet fra Lundeborg. A˚rbog for Svendborg and Omegns Museum. pp 47-51.
    • 26. Hallstro¨m A (1979) Die Fischknochen. In: Boessneck J, von den Driesch A, eds. Eketorp: Befestigung und Siedlung auf O¨land/Schweden Die Fauna. Stockholm: Almquist & Wiksell. pp 422-492.
    • 27. Watt M (1991) Sorte Muld. Høvdingesaede og kultcentrum fra Bornholms yngre jernalder. In: Mortensen M, Rasmussen BM, eds. Fra Stamme til Stat i Danmark 2 Høvdinge-samfund og Kongemagt. A˚rhus: Jysk Arkaeologisk Selskab. pp 89-107.
    • 28. Westholm G, Sigvallius B (1982) Ma˚ltidsrester bera¨tter… Benmaterialet fra˚n gra¨vningen i kv Apoteket i Visby osteologiskt underso¨kt. Gotla¨ndskt Arkiv 54: 45-56.
    • 29. Lo˜ugas L (2008) Fishing during the Viking Age in the eastern and western Baltic Sea. In: Be´arez P, Grouard S, Clavel B, eds. Arche´ologie du Poisson: 30 ans d'arche´o-ichtyologie au CNRS. Antibes: E´ ditions APDCA. pp 27-33.
    • 30. Lo˜ugas L (2001) Development of fishery during the 1st and 2nd millenia AD in the Baltic region. Journal of Estonian Archaeology 5: 128-147.
    • 31. Ha˚rding B (1990) Vad benan bera¨tter. In: Tesch S, ed. Stad och Stadsplan Makt och ma¨nniskor i kungens Sigtuna. Sigtuna: Sigtuna Museer. pp 105-109.
    • 32. Jonsson L (1986) Finska ga¨ddor och Bergenfisk ett fo¨rso¨k att belysa Uppsalas fiskimport under medeltid och yngre Vasatid. In: Cnattingius N, Nere´us T, eds. Fra˚n O¨stra Aros till Uppsala En samling uppsatser kring det medeltida Uppsala. Uppsala: Almqvist & Wiksell. pp 122-139.
    • 33. Kadakas V, Nurk R, Pu¨u¨ a G, Toos G, Lo˜ugas L, et al. (2010) Rescue excavations in Tallinn Vabaduse Square and Ingermanland Bastion 2008-2009. In: Oras E, Russow E, eds. Archaeological Fieldwork in Estonia 2009. Tallinn: Muinsuskaitseamet. pp 49-69.
    • 34. Makowiecki D (2003) Historia ryb i ryboło´wstwa w holocenie na Niz_u Polskim w ´swietle badan´ archeoichtiologicznych. Poznan´ : Polish Academy of Science. 198 p.
    • 35. Heinrich D (1986) Fishing and consumption of cod (Gadus morhua Linnaeus, 1758) in the Middle Ages. In: Brinkhuizen DC, Clason AT, eds. Fish and Archaeology: studies in osteometry, taphonomy, seasonality and fishing methods. Oxford: BAR. pp 42-52.
    • 36. Barrett JH (1997) Fish trade in Norse Orkney and Caithness: a zooarchaeological approach. Antiquity 71: 616-638.
    • 37. Christensen P, Nielssen AR (1996) Norwegian fisheries 1100-1970: main developments. . In: Holm P, Starkey DJ, Thor J, eds. The North Atlantic Fisheries, 1100-1976: national perspectives on a common resource. Esbjerg: North Atlantic Fisheries History Association. pp 145-176.
    • 38. Robinson R (2009) The fisheries of northwest Europe, c.1100-1850. In: Starkey DJ, Tho´r JT, Heidbrink I, eds. A History of the North Atlantic Fisheries Volume 1: from early times to the mid-nineteenth century. Bremen: Verlag H. M. Hauschild. pp 127-171.
    • 39. Gade JA (1951) The Hanseatic Control of Norwegian Commerce during the Late Middle Ages. Leiden: E. J. Brill. pp 139.
    • 40. Hoffmann RC (2002) Carp, cods and connections: new fisheries in the medieval European economy and environment. In: Henninger-Voss MJ, ed. Animals in Human Histories: the mirror of nature and culture. RochesterN.Y.: University of Rochester Press. pp 3-55.
    • 41. Otterlind G (1984) On fluctuations of the Baltic cod stock. ICES CM 1984/J:14. Copenhagen: ICES.
    • 42. Fredriksen S (2003) Food web studies in a Norwegian kelp forest based on stable isotope (d13C and d15N) analysis. Marine Ecology Progress Series 260: 71-81.
    • 43. Jennings S, Warr KJ (2003) Environmental correlates of large-scale spatial variation in the d15N of marine animals. Marine Biology 142: 1131-1140.
    • 44. Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007) Effects of body size and environment on diet-tissue d15N fractionation in fishes. Journal of Experimental Marine Biology and Ecology 340: 1-10.
    • 45. Weidman CR, Millner R (2000) High-resolution stable isotope records from North Atlantic cod. Fisheries Research 46: 327-342.
    • 46. Bergfur J, Johnson R, Sandin L, Goedkoop W (2009) Effects of nutrient enrichment on C and N stable isotope ratios of invertebrates, fish and their food resources in boreal streams. Hydrobiologia 628: 67-79.
    • 47. Deutsch B, Berth U (2006) Differentiation of western and eastern Baltic Sea cod stocks (Gadus morhua) by means of stable isotope ratios in muscles and otoliths. Journal of Applied Ichthyology 22: 538-539.
    • 48. Holmes SJ, Wright PJ, Fryer RJ (2008) Evidence from survey data for regional variability in cod dynamics in the North Sea and West of Scotland. ICES Journal of Marine Science: Journal du Conseil 65: 206-215.
    • 49. Sarvas TH, Fevolden SE (2005) Pantophysin (Pan I) locus divergence between inshore v. offshore and northern v. southern populations of Atlantic cod in the north-east Atlantic. Journal of Fish Biology 67: 444-469.
    • 50. Sveda¨ng H, Andre´ C, Jonsson P, Elfman M, Limburg K (2010) Migratory behaviour and otolith chemistry suggest fine-scale sub-population structure within a genetically homogenous Atlantic Cod population. Environmental Biology of Fishes 89: 383-397.
    • 51. Wright PJ, Neat FC, Gibb FM, Gibb IM, Thordarson H (2006) Evidence for metapopulation structuring in cod from the west of Scotland and North Sea. Journal of Fish Biology 69: 181-199.
    • 52. Voss M, Larsen B, Leivuori M, Vallius H (2000) Stable isotope signals of eutrophication in Baltic Sea sediments. Journal of Marine Systems 25: 287-298.
    • 53. Struck U, Emeis KC, Voss M, Christiansen C, Kunzendorf H (2000) Records of southern and central Baltic Sea eutrophication in d13C and d15N of sedimentary organic matter. Marine Geology 164: 157-171.
    • 54. Christensen JT, Richardson K (2008) Stable isotope evidence of long-term changes in the North Sea food web structure. Marine Ecology-Progress Series 368: 1-8.
    • 55. Doney SC (2010) The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry. Science 328: 1512-1516.
    • 56. Savage C, Leavitt PR, Elmgren R (2010) Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnology and Oceanography 55: 1033-1046.
    • 57. Serna A, Pa¨tsch J, Da¨hnke K, Wiesner MG, Christian Hass H, et al. (2010) History of anthropogenic nitrogen input to the German Bight/SE North Sea as reflected by nitrogen isotopes in surface sediments, sediment cores and hindcast models. Continental Shelf Research 30: 1626-1638.
    • 58. Coy J, Hamilton-Dyer S (2005) Meat and fish: the bone evidence. In: Gardiner J, ed. Before the Mast: life and death aboard the Mary Rose. Oxford: Mary Rose Trust/Oxbow Books. pp 564-588.
    • 59. Helcom (2003) The Baltic Marine Environment 1999-2002. Baltic Sea Environment Proceedings 87. Helsinki: Helsinki Commission for the Protection of the Baltic Marine Environment. 48 p.
    • 60. BACC (2007) Assessment of climate change for the Baltic Sea Basin. Berlin: Springer. 474 p.
    • 61. Neuenfeldt S, Hinrichsen H-H, Nielsen A, Andersen KH (2007) Reconstructing migrations of individual cod (Gadus morhua L.) in the Baltic Sea by using electronic data storage tags. Fisheries Oceanography 16: 526-535.
    • 62. Starkey DJ, Tho´r JT, Heidbrink I (2009) A History of the North Atlantic Fisheries Volume 1: from early times to the mid-nineteenth century. Bremen: Verlag H. M. Hauschild. 456 p.
    • 63. Grupe G, Heinrich D, Peters J (2009) A brackish water aquatic foodweb: trophic levels and salinity gradients in the Schlei fjord, Northern Germany, in Viking and medieval times. Journal of Archaeological Science 36: 2125-2144.
    • 64. Prummel W (1993) Starigard/Oldenburg. Hauptburg der Slawen in Wagrien 4: Tierknochenfunde unter besonderer Beru¨ cksichtigung der Beizjagd. Neum u¨nster: Offa. 215 p.
    • 65. Pluskowski A, Maltby M, Seetah K (2009) Animal bones from an industrial quarter at Malbork, Poland: towards an ecology of a castle built in Prussia by the Teutonic Order. Crusades 8: 191-212. ?
    • 66. Zˇulkus V, Daugnora L (2009) What did the Order's brothers eat in the Klaipeda castle (the historical and zooarchaeological data). Archaeologia Baltica 12: 74-87.
    • 67. Polak Z (2005) Historia Poszukiwan´ Trzynastowiecznego Gdan´ ska. In: Leciejewicza L, Re˛bkowskiego M, eds. Civitas Cholbergiensis: transformacja kulturowa w strefie nadbałtyckiej w xii w. Kołobrzeg: S´ rodko´w Urze˛du Miasta w Kołobrzegu i Fundacji Wspo´łpracy Polsko-Niemieckiej. pp 135-145.
    • 68. Brander KM (2010) Cod Gadus morhua and climate change: processes, productivity and prediction. Journal of Fish Biology 77: 1899-1911.
    • 69. Ojaveer E, Kalejs M (2005) The impact of climate change on the adaptation of marine fish in the Baltic Sea. ICES Journal of Marine Science: Journal du Conseil 62: 1492-1500.
    • 70. Ko¨ster FW, Mo¨llmann C, Hinrichsen H-H, Wieland K, Tomkiewicz J, et al. (2005) Baltic cod recruitment - the impact of climate variability on key processes. ICES Journal of Marine Science: Journal du Conseil 62: 1408-1425.
    • 71. Bager M, Hansen L, Jessen P (2002) Danish Baltic Catch Data, 1611-1920. In: Barnard MG, Nicholls JH, compilers (2002) HMAP Data Pages. Hull: HMAP, Available: http://www.hull.ac.uk/hmap/Library/Library.htm. Accessed 2011 Apr 20.
    • 72. Sveda¨ng H, Righton D, Jonsson P (2007) Migratory behaviour of Atlantic cod Gadus morhua: natal homing is the prime stock-separating mechanism. Marine Ecology Progress Series 345: 1-12.
    • 73. Richards MP, Hedges REM (1999) Stable Isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic Coast of Europe. Journal of Archaeological Science 26: 717-722.
    • 74. Brown TA, Nelson DE, Southon JR (1988) Improved collagen extraction by modified Longin method. Radiocarbon 30: 171-177.
    • 75. DeNiro J (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317: 806-809.
    • 76. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495-506.
    • 77. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between d15N and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140.
    • 78. Schoeninger M, DeNiro M (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica 48: 625-639.
    • 79. Jennings S, Greenstreet S, Hill L, Piet G, Pinnegar J, et al. (2002) Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics. Marine Biology 141: 1085-1097.
    • 80. Nakazawa T, Sakai Y, Hsieh CH, Koitabashi T, Tayasu I, et al. (2010) Is the Relationship between Body Size and Trophic Niche Position Time-Invariant in a Predatory Fish? First Stable Isotope Evidence. PloS ONE 5: e9120.
    • 81. Van Neer W, Lo˜ugas L, Rijnsdorp AD (1999) Reconstructing age distribution, season of capture and growth rate of fish from archaeological sites based on otoliths and vertebrae. International Journal of Osteoarchaeology 9: 116-130.
    • 82. Sparholt H (1994) Fish species interactions in the Baltic Sea. Dana 10: 131-162.
    • 83. Uzars D, Plikshs M (2000) Cod (Gadus morhua L.) cannibalism in the Central Baltic: interannual variability and influence of recruit abundance and distribution. ICES Journal of Marine Science: Journal du Conseil 57: 324-329.
  • No similar publications.