Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lee, M.R.; Sofe, M.R.; Lindgren, P.; Starkey, N.A.; Franchi, I.A. (2013)
Publisher: Elsevier Ltd.
Journal: Geochimica et Cosmochimica Acta
Languages: English
Types: Article
Subjects: Geochemistry and Petrology
The CM2 carbonaceous chondrite LON 94101 contains aragonite and two generations of calcite that provide snapshots of the chemical and isotopic evolution of aqueous solutions during parent body alteration. Aragonite was the first carbonate to crystallize. It is rare, heterogeneously distributed within the meteorite matrix, and its mean oxygen isotope values are δ18O 39.9±0.6‰, Δ17O -0.3±1.0‰ (1σ). Calcite precipitated very soon afterwards, and following a fall in solution Mg/Ca ratios, to produce small equant grains with a mean oxygen isotope value of δ18O 37.5±0.7‰, Δ17O 1.4±1.1‰ (1σ). These grains were partially or completely replaced by serpentine and tochilinite prior to precipitation of the second generation of calcite, which occluded an open fracture to form a millimeter-sized vein, and replaced anhydrous silicates within chondrules and the matrix. The vein calcite has a mean composition of δ18O 18.4±0.3‰, Δ17O -0.5±0.5‰ (1σ). Petrographic and isotopic results therefore reveal two discrete episodes of mineralization that produced Ca-carbonates with contrasting δ18O, but whose Δ17O values are indistinguishable within error. The aragonite and equant calcite crystallized over a relatively brief period early in the aqueous alteration history of the parent body, and from static fluids that were evolving chemically in response to mineral dissolution and precipitation. The second calcite generation crystallized from solutions of a lower Δ17O, and a lower δ18O and/or higher temperature, which entered LON 9410 via a fracture network. As two generations of calcite whose petrographic characteristics and oxygen isotopic compositions are similar to those in LON 94101 occur in at least one other CM2, multiphase carbonate mineralization could be the typical outcome of the sequence of chemical reactions during parent body aqueous alteration. It is equally possible however that the second generation of calcite in formed in response to an event such as impact fracturing and concomitant fluid mobilisation that affected a large region of the common parent body of several CM2 meteorites. These findings show that integrated petrographic, chemical and isotopic studies can provide new insights into the mechanisms of parent body alteration including the spatial and temporal dynamics of the aqueous system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander C. M. O'D., Bowden R., Fogel M. L. and Howard K. T. (2013) Carbonate abundances and isotopic compositions in chondrites. Lunar Planet. Sci. 44. Lunar Planet. Inst., Houston. #2788 (abstr.).
    • Antarctic Meteorite Newsletter (1995) vol. 18, no. 2. JSC, NASA Johnson Space Center, Houston, TX (August).
    • Balthasar U., Cusack M., Faryma L., Chung P., Holmer L. E., Percival I. G. and Popov L. E. (2011) Relic aragonite from Ordovician-Silurian brachiopods - implications for evolution of calcification. Geology 39, 967970.
    • Barber D. J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochim. Cosmochim. Acta 45, 945970.
    • Benedix G. K., Leshin L. A., Farquhar J., Jackson T. and Thiemens M. H. (2003) Carbonates in CM2 chondrites: Constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochim. Cosmochim. Acta 67, 15771588.
    • Bland P. A., Jackson M. D., Coker R. F., Cohen B. A., Webber B. W., Lee M. R., Duffy C. M., Chater R. J., Ardakani M. G., McPhail D. S., McComb D. W. and Benedix G. K. (2009) Why aqueous alteration in asteroids was isochemical: High porosity - high permeability. Earth Planet. Sci. Lett. 287, 559-568.
    • Bonal L., Huss G. R., Krot A. N. and Nagashima K. (2010) Chondritic lithic clasts in the CB/CH-like meteorite Isheyevo: Fragments of previously unsampled parent bodies. Geochim. Cosmochim. Acta 74, 25002522.
    • Bots P., Benning L. G., Rickaby R. E. M. and Shaw S. (2011) The role of SO4 in the switch from calcite to aragonite seas. Geology 39, 331-334.
    • Brearley A. J. (1998) Carbonates in CM carbonaceous chondrites: Complex zoning revealed by high resolution cathodoluminescence studies. Lunar Planet. Sci. 29. Lunar Planet. Inst., Houston. #1246 (abstr.).
    • Brearley A. J. (2006) The role of microchemical environments in the alteration of CM carbonaceous chondrites. Lunar Planet. Sci. 37. Lunar Planet. Inst., Houston. #2074 (abstr.).
    • Brearley A. J. and Hutcheon I. D. (2000) Carbonates in the CM1 chondrite ALH 84034: Mineral chemistry, zoning and Mn-Cr systematics. Lunar Planet. Sci. 31. Lunar Planet. Inst., Houston. #1407 (abstr.).
    • Brearley A. J. and Hutcheon I. D. (2002) Carbonates in the Y791198 CM2 chondrite: Zoning and Mn-Cr systematics (abstract). Meteorit. Planet. Sci. 37, A23.
    • Brearley A. J., Saxton J. M., Lyon I. C. and Turner G. (1999) Carbonates in the Murchison CM chondrite: CL characteristics and oxygen isotopic compositions. Lunar Planet. Sci. 30. Lunar Planet. Inst., Houston. #1301 (abstr.).
    • Brearley A. J., Hutcheon I. D. and Browning L. (2001) Compositional zoning and Mn-Cr systematics in carbonates from the Y791198 CM2 carbonaceous chondrite. Lunar Planet. Sci. 32. Lunar Planet. Inst., Houston. #1458 (abstr.).
    • Browning L. B. and Bourcier W. L. (1998) On the origin of rim textures surrounding carbonate grains in CM matrices. Lunar Planet. Sci. 29. Lunar Planet. Inst., Houston. #1533 (abstr.).
    • Clayton R. N. and Mayeda T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151-161.
    • Clayton R. N. and Mayeda T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089- 2104.
    • de Leuw S., Rubin A. E., Schmidt A. K. and Wasson J. T. (2009) 53Mn-53Cr systematics of carbonates in CM chondrites: Implications for the timing and duration of aqueous alteration. Geochim. Cosmochim. Acta 73, 7433-7442.
    • de Leuw S., Rubin A. E., Schmidt A. K. and Wasson J. T. (2010) Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites. Meteorit. Planet. Sci. 45, 513-530.
    • DuFresne E. R. and Anders E. (1962) On the chemical evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta 26, 1085-1114.
    • Fuchs L. H., Olsen E. and Jensen K. J. (1973) Mineralogy, mineral chemistry and composition of the Murchison (C2) meteorite. Smithson. Contrib. Earth Sci. 10, 139.
    • Fujiya W., Sugiura N., Hotta H., Ichimura K. and Sano Y. (2012) Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nat. Commun. 3, 627.
    • Gaetani G. A. and Cohen A. L. (2006) Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochim. Cosmochim. Acta 70, 46174634.
    • Grady M. M., Wright I. P., Swart P. K. and Pillinger C. T. (1988) The carbon and oxygen isotopic composition of meteoritic carbonates. Geochim. Cosmochim. Acta 52, 2855- 2866.
    • Guo W. and Eiler J. M. (2007) Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochim. Cosmochim. Acta 71, 5565-5575.
    • Hanowski N. P. and Brearley A. J. (2001) Aqueous alteration of chondrules in the Cm carbonaceous chondrite, Allan Hills 81002: Implications for parent body alteration. Geochim. Cosmochim. Acta 65, 495518.
    • Hardie L. A. (1996) Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24, 279-283.
    • Ho¨ velmann J., Austrheim H., Beinlich A. and Munz I. A. (2011) Experimental study of the carbonation of partially serpentinized and weathered peridotites. Geochim. Cosmochim. Acta 75, 67606779.
    • Huang Y. and Fairchild I. J. (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim. Cosmochim. Acta 65, 4762.
    • Jenniskens P., Fries M. D., Qing-Zhu Y., Zolensky M., Krot A. N., Sanford S. A., Sears D., Bauford R., Ebel D. S., Friedrich J. M., Nagashima K., Wimpenny J., Yamakawa A., Nishiizumi K., Hamajima Y., Caffee M., Weten K. C., Laubenstein M., Davis A., Simon S. B., Heck P. R., Young E. D., Kohl I. E., Thimens M. H., Nunn M. H., Mikouchi T., Hagiya K., Ohsumi K., Cahill T. A., Lawton J. A., Barnes D., Steele A., Rochette P., Verosub K. L., Gattacceca J., Cooper G., Glavin D. P., Burton A. S., Dworkin J. P., Elsila J. E., Pizzerello S., Ogliore R., Schitt-Kopplin P., Harir M., Hertkorn N., Verchovsky S., Grady M., Nagao K., Okazaki R., Takechi H., Hirori T., Smith K., Silber E. A., Brown P. G., Albers J., Klotz D., Hankey M., Matson R., Fries J. A., Walker R. J., Puchtel I., Lee C.-T. A., Erdman M. E., Eppich G. R., Roeske S., Gabelica Z., Lerche M., Nuevo M., Girten B. and Worden S. P. (2012) Radarenabled recovery of the Sutter's Mill meteorite, a carbonaceous chondrite regolith breccia. Science 338, 1583-1587.
    • Johnson C. A. and Prinz M. (1993) Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration. Geochim. Cosmochim. Acta 57, 28432852.
    • Kelemen P. B., Matter J., Streit E. E., Rudge J. F., Curry W. B. and Blusztajn J. (2011) Rates and mechanisms of mineral carbonation in petidotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Earth Planet. Sci. 39, 545576.
    • Kim S.-T., O'Neil J. R., Hillaire-Marcel C. and Mucci A. (2007) Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71, 47044715.
    • Kohl I. E., Yin Q. Z. and Young E. D. (2013) Sutter's Mill meteorite oxygen isotopes: More evidence for water-rock open system alteration. Lunar Planet. Sci. 44. Lunar Planet. Inst., Houston. #13005 (abstr.).
    • Lee M. R. (1993) The petrography, mineralogy and origins of calcium sulphate within the Cold Bokkeveld CM carbonaceous chondrite. Meteoritics 28, 5362.
    • Lee M. R. and Ellen R. (2008) Aragonite in the Murray (CM2) carbonaceous chondrite: Implications for parent body compaction and aqueous alteration. Meteorit. Planet. Sci. 43, 1219-1231.
    • Lee M. R., Lindgren P., Sofe M., Alexander C. M. O'D. and Wang J. (2012) Extended chronologies of aqueous alteration in the CM2 carbonaceous chondrites: Evidence from carbonates in Queen Alexandra Range 93005. Geochim. Cosmochim. Acta 92, 148-169.
    • Lindgren P., Lee M. R., Sofe M. R. and Burchell M. J. (2011) Microstructure of calcite in the CM2 carbonaceous chondrite LON 94101: Implications for deformation history during and/ or after aqueous alteration. Earth Planet. Sci. Lett. 306, 289- 298.
    • Lindgren P., Lee M. R. and Sofe M. (2012) Evidence for multiple fluid pulses in the CM1 carbonaceous chondrite parent body. Lunar Planet. Sci. 43. Lunar Planet. Inst., Houston. #1949 (abstr.).
    • Lindgren P., Lee M. R., Sofe M. R. and Zolensky M. E. (2013) Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: Evidence for aqueous alteration prior to complex mixing. Meteorit. Planet. Sci. 48, 1074-1090.
    • Maeda M., Tomeoka K. and Seto Y. (2009) Early aqueous alteration in the QUE97990 and Y791198 CM carbonaceous chondrites. J. Mineral. Petrol. Sci. 104, 92-96.
    • Matter J. M. and Kelemen P. B. (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837841.
    • Morse J. W., Wang Q. and Tsio M. Y. (1997) Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25, 85-87.
    • Mu¨ ller W. F., Kurat G. and Kracher A. (1979) Chemical and crystallographic study of cronstedite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Min. Pet. Mitt. 26, 293-304.
    • Palguta J., Schubert G. and Travis B. J. (2010) Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. 296, 235-243.
    • Parsons I. and Lee M. R. (2009) Mutual replacement reactions in alkali feldspars I: Microtextures and mechanisms. Contrib. Miner. Petrol. 157, 641-661.
    • Putnis A. (2002) Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineral. Mag. 66, 689-708.
    • Redfern S. A. T., Salje E. and Navrotsky A. (1989) Hightemperature enthalpy at the orientational order-disorder transition in calcite: Implications for the calcite/aragonite phase equilibrium. Contrib. Miner. Petrol. 101, 479-484.
    • Riciputi L. R., McSween, Jr., H. Y., Johnson C. A. and Prinz M. (1994) Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for compositions of co-existing fluids. Geochim. Cosmochim. Acta 58, 13431351.
    • Rubin A. E. (2012) Collisional facilitation of aqueous alteration in CM and CV carbonaceous chondrites. Geochim. Cosmochim. Acta 90, 181-194.
    • Rubin A. E., Trigo-Rodriguez J. M., Huber H. and Wasson J. T. (2007) Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361-2382.
    • Sofe M. R. (2013) The oldest carbonate minerals on Earth: Insights into the early history of the Solar System. Unpublished Ph. D. thesis, Univ. Glasgow.
    • Sofe M. R., Lee M. R. and Lindgren P. (2011) Aragonite in the CM carbonaceous chondrites: A proxy for the magnitude of aqueous alteration. Meteorit. Planet. Sci. 46 (abstr. no. 5250).
    • Starkey N. A. and Franchi I. A. (2013) Insight into the silicate and organic reservoirs of the comet forming region. Geochim. Cosmochim. Acta 105, 73-91.
    • Threlfall T. (2003) Structural and thermodynamic explanations of Ostwald's rule. Org. Process Res. Dev. 7, 1017-1027.
    • Tomeoka K. and Buseck P. R. (1985) Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O, and Ni. Geochim. Cosmochim. Acta 49, 21492163.
    • Travis B. J. and Schubert G. (2005) Hydrothermal convection in carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. 240, 234250.
    • Tyra M. A., Farquhar J., Wing B. A., Benedix G. K., Jull A. J. T., Jackson T. and Thiemens M. H. (2007) Terrestrial alteration of carbonate in a suite of Antarctic CM chondrites: Evidence from oxygen and carbon isotopes. Geochim. Cosmochim. Acta 71, 782-795.
    • Tyra M. A., Farquhar J., Guan Y. and Leshin L. A. (2012) An oxygen isotope dichotomy in CM2 chondritic carbonates-A SIMS approach. Geochim. Cosmochim. Acta 77, 383-395.
    • White S. N. (2009) Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem. Geol. 259, 240-252.
    • Young E. D. (2001) The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philos. Trans. R. Soc. London A 359, 2095-2110.
    • Young E. D., Ash R. D., England P. and Rumble, III, D. (1999) Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals. Science 286, 1331-1335.
    • Young E. D., Zhang K. K. and Schubert G. (2003) Conditions for pore water convection within carbonaceous chondrite parent bodies - implications for planetesimal size and heat production. Earth Planet. Sci. Lett. 213, 249-259.
    • Zolensky M. E., Barrett R. and Browning L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3123-3148.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article