LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Borges, Rafael; Garcez, A.; Lamb, L. C. (2011)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
Subjects: RC0321, QA75
The effective integration of knowledge representation, reasoning, and learning in a robust computational model is one of the key challenges of computer science and artificial intelligence. In particular, temporal knowledge and models have been fundamental in describing the behavior of computational systems. However, knowledge acquisition of correct descriptions of a system's desired behavior is a complex task. In this paper, we present a novel neural-computation model capable of representing and learning temporal knowledge in recurrent networks. The model works in an integrated fashion. It enables the effective representation of temporal knowledge, the adaptation of temporal models given a set of desirable system properties, and effective learning from examples, which in turn can lead to temporal knowledge extraction from the corresponding trained networks. The model is sound from a theoretical standpoint, but it has also been tested on a case study in the area of model verification and adaptation. The results contained in this paper indicate that model verification and learning can be integrated within the neural computation paradigm, contributing to the development of predictive temporal knowledge-based systems and offering interpretable results that allow system researchers and engineers to improve their models and specifications. The model has been implemented and is available as part of a neural-symbolic computational toolkit.

Share - Bookmark

Cite this article