Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Langley, James (2016)
Publisher: Springer
Languages: English
Types: Article
Subjects: 30D35, Mathematics - Complex Variables

Classified by OpenAIRE into

arxiv: Mathematics::Complex Variables, Mathematics::Metric Geometry
Consider a transcendental meromorphic function in the plane with finitely many critical values, such that the multiple points have bounded multiplicities and the inverse function has finitely many transcendental singularities. Using the Wiman-Valiron method it is shown that if the Schwarzian derivative is transcendental then the function has infinitely many multiple points, the inverse function does not have a direct transcendental singularity over infinity, and infinity is not a Borel exceptional value. The first of these conclusions was proved by Nevanlinna and Elfving via a fundamentally different method.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of nite order, Rev. Mat. Iberoamericana 11 (1995), 355-373.
    • [2] W. Bergweiler and J.K. Langley, Zeros of di erences of meromorphic functions, Math. Proc. Camb. Phil. Soc. 142 (2007), 133-147.
    • [3] W. Bergweiler, P.J. Rippon and G.M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, , Proc. London Math. Soc. 97 (2008), 368-400.
    • [4] D. Drasin, Proof of a conjecture of F. Nevanlinna concerning functions which have de ciency sum two, Acta. Math. 158 (1987), 1-94.
    • [5] G. Elfving, U ber eine Klasse von Riemannschen Flachen und ihre Uniformisierung, Acta Soc. Sci. Fenn. 2 (1934) 1-60.
    • [6] A. Eremenko, Meromorphic functions with small rami cation, Indiana Univ. Math. J. 42 (1994), 1193-1218.
    • [7] A. Eremenko, Geometric theory of meromorphic functions, In the Tradition of Ahlfors-Bers, III, Contemp. Math. 355, (Amer. Math. Soc. Providence, 2004) 221-230.
    • [8] A. Eremenko and M.Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier Grenoble 42 (1992), 989-1020.
    • [9] A.A. Gol'dberg and I. V. Ostrovskii, Distribution of values of meromorphic functions, (Nauka, Moscow, 1970 (Russian)). English transl., Translations of Mathematical Monographs 236, (Amer. Math. Soc. Providence 2008).
    • [10] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88-104.
    • [11] W.K. Hayman, Meromorphic functions, (Oxford at the Clarendon Press, 1964).
    • [12] W.K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358.
    • [13] W.K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84.
    • [14] W.K. Hayman, Multivalent functions, 2nd edition, Cambridge Tracts in Mathematics 110, (Cambridge University Press, Cambridge, 1994).
    • [15] E. Hille, Lectures on ordinary di erential equations, (Addison-Wesley, Reading, Mass., 1969).
    • [16] E. Hille, Ordinary di erential equations in the complex domain, (Wiley, New York, 1976).
    • [17] F. Iversen, Recherches sur les fonctions inverses des fonctions meromorphes, Thesis, University of Helsinki, (Imprimerie de la Societe de Litterature Finnoise, Helsinki, 1914).
    • [18] G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Di erentialgleichungen, (Birkhauser, Basel, 1985).
    • [19] J.K. Langley, Proof of a conjecture of Hayman concerning f and f 00, J. London Math. Soc. (2) 48 (1993), 500-514.
    • [20] Z. Nehari, The Schwarzian derivative and schlicht functions. Bulletin Amer. Math. Soc. 55 (1949), 545-551.
    • [21] Z. Nehari, Conformal mapping, (Dover, New York, 1975).
    • [22] F. Nevanlinna,U ber eine Klasse meromorpher Funktionen, Septieme Congres Math. Scand. Jbuch. 56 (Oslo, 1929), 81-83.
    • [23] R. Nevanlinna, U ber Riemannsche Flachen mit endlich vielen Windungspunkten, Acta Math. 58 (1932), 295-373.
    • [24] R. Nevanlinna, Eindeutige analytische Funktionen, 2. Au age (Springer, Berlin, 1953).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article