Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gałka, Mariusz; Tanţău, Ioan; Ersek, Vasile; Feurdean, Angelica (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: F800, F600
We present a high-resolution, continuous plant macrofossil remains record complemented by a pollen sequence from Tăul Muced bog, in the Eastern Carpathian Mountains (Romania). The record spans the last 9000 years and we test whether peatland development in the Eastern Carpathians is linked to climate change or to autogenic succession. We find that Sphagnum magellanicum was the dominant peat-forming species for ca. 8000 years but we also identify ten phases of increased representation of Eriophorum vaginatum at approximately 8100, 7550, 6850, 6650, 5900, 4650, 3150, 1950, 1450, 750 cal yr. BP. Visual inspection and wavelet analysis show that the episodic increases in the relative abundances of Eriophorum vaginatum were simultaneous with decreased abundances of Sphagnum magellanicum and Sphagnum angustifolium. Comparison with published palaeoclimatic records in this region suggests that these cyclical successions of S. magellanicum and E. vaginatum appear to be primarily a result of climate changes, with E. vaginatum developing mainly during dry phases and S. magellanicum during wetter periods. We therefore suggest that the development of this peatland was largely influenced by changing climatic conditions, although the role of autogenic plant succession cannot be excluded. Our results show the value of ombrotrophic peat deposits as archives of past climate change.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Burescu, P., Togor, G., 2010. Phytocoenological studies on oligotroph peat bog of Bihorului mountains. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 20, 71-81.
    • Büntgen, U, Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J.O., Herzig, F., Heussner, K.-U., Esper J., 2011. 2500 years of European Tclimate variability and human susceptibility. Science 331, 578-582. IP
    • Coldea, G., Plămadă, E., 1989. Vegetaţia mlaştinilor oligotrofe din RCarpaţii româneşti (Clasa Oxycocco - Sphagnetea Br.-Bl.et Tx. 1943). Contributii CBotanice 37-43.
    • Charman, D. J., Blundell, A., Chiverrell, R.C., Hendon, D., LSangdon, P.G., 2006. U Compilation of non-annually resolved Holocene proxy climate records: Stacked N Holocene peatland palaeo-water table reconstructions from northern Britain. Quat. Sci. A Rev. 25, 336-350. M
    • Charman, D.J., Barber, K.E., Blaauw, M., Langdon, P.G., Mauquoy, D., Daley, T.J., Hughes, D P.D.M., Karofeld, E., 2009. ClEimate drivers for peatland palaeoclimate records. Quat. Sci. Rev. 28, 1811-18T19.
    • Dierßen, K., Dierßen, B., 2001. PMoore. Stuttgart, Ulmer, DE. E
    • Dragusin, V., Staubwasser, M., Hoffmann, D.L., Ersek, V., Onac, B.P., Veres, D., 2014. C Constraining Holocene hydrological changes in the Carpathian-Balkan region C using speleoAthem 18O and pollen-based temperature reconstructions. Climate of the Past Discussions 10: 381-427. http://dx.doi.org/10.5194/cpd-10-381-2014.
    • Drzymulska, D., Zieliński, P., 2013. Developmental changes in the historical and presentday trophic status of brown water lakes. Are humic water bodies a uniform aquatic ecosystem? Wetlands 33, 909-919.
    • Feurdean, A., 2005. Holocene forest dynamics in northwestern Romania. The Holocene 13, 435-446.
    • Feurdean, A., Klotz, S., Brewer, S., Mosbrugger, V., Tămaş, T., Wohlfarth, B., 2008. Lateglacial climate development in NW Romania - comparative results from three quantitative pollen based methods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 121-133.
    • Feurdean, A., Tanţău, I., Fărcaş, S., 2011. Temporal variability in the geogTraphical range and abundance of Pinus, Picea abies, and Quercus in Romania. PQuat. Sci. Rev. 30, I 3060-3075. R
    • Feurdean, A., Liakka, J., Vannière, B., Marinova, E., HutchinsoCn,S.M., Mosburgger, V., Hickler, T., 2013. 12,000-Years of fire regime drivers Sin the lowlands of Transylvania U (Central-Eastern Europe): a data-model approach. Quat. Sci. Rev. 81, 48-61. N
    • Feurdean, A., Gałka M., Kuske, E., Tanţău, I., Lamentowicz, M., Florescu, G., A Hutchinson, S.M., Liakka, J., Mulch, A., Hickler, T. 2015. Last Millennium hydroM climate variability in Central Eastern Europe (Northern Carpathians, Romania). The Holocene 25, 1179-1192. ED
    • Feurdean, A., Gałka, Tanţău, I., GeTanta, A., Hutchinson, S.M., Hickler, T., 2016. Tree and timberline shifts in the noPrthern Romanian Carpathians during the Holocene and the E responses to environmental changes. Quat. Sci. Rev. 134, 100-113. C
    • Gałka, M., Miotk-Szpiganowicz, G., Goslar, T., Jęśko, M., van der Knaap, O.W., C LamentowiAcz,M., 2013a. Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370, 209-221.
    • Gałka, M., Lamentowicz, Ł., Lamentowicz, M., 2013b. Palaeoecology of Sphagnum obtusum in NE Poland. The Bryologist 116, 238-247.
    • Gałka, M., Lamentowicz, M., 2014. Sphagnum succession in a Baltic bog in Central-Eastern Europe over the last 6200 years and paleoecology of Sphagnum contortum. The Bryologist 117, 22-36.
    • Gałka, M., Tobolski, K., Górska, A., Milecka, K., Fiałkiewicz-Kozieł, B., Lamentowicz, M., 2014. Disentangling the drivers for the development of a Baltic bog during the Little Ice Age in northern Poland. Quat. Int. 328-329, 323-337.
    • Giesecke T., Bennett, K. D., 2004. The Holocene spread of Picea abies (L.T)Karst. in Fennoscandia and adjacent areas. J. Biogeogr. 31, 1523-1548. IP
    • Grindean, R., Feurdean A., Hurdu, B., Fracas, S, Tantau, I., 2015. RLateglacial/Holocene transition to mid-Holocene: Vegetation responses to climCate changes in the Apuseni Mountains (NW Romania). Quat. Int. 388, 76-86. S U
    • Grinsted, A., Moore, J. C., Jevrejeva, S., 2004. Application of the cross wavelet transform N and wavelet coherence to geophysical time series. Nonlin. Processes Geophys. 11, A 561-566. M
    • Hájková, P., Hájek, M., 2007. Sphagnum distribution patterns along environmental gradients in Bulgaria. J. Bryol. 29, 18-26. D E
    • Herbichowa, M., 1998. Ekologiczne Tstudium rozwoju torfowisk wysokich właściwych na przykładzie wybranycPhobiektów z środkowej części Pobrzeża Bałtyckiego. E Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, PL. C
    • Hölzer, A., 2010. Die Torfmoose Südwestdeutschlands und der Nachbargebiete. Weissdorn C Verlag Jena, AJena.
    • Juggins, S., 2003. C2 User guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, UK.
    • Keatinge, T. H., 1975. Plant community dynamics in wet heathland. J. Ecol. 63, 163-172.
    • Koperski, M., 2011. Die Moose des Nationalparks Harz. Eine kommentierte Artenliste. Schriftenreihe aus dem Nationalpark Harz, DE.
    • Kuhry, P., 1994. The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. J. Ecol. 82: 899-910.
    • Kuhry, P., Nicholson, B. J., Gignac, L. D., Vitt, D. H., Bayley, S.E., 1993. Development of Sphagnum dominated peatlands in boreal continental Canada. Can. J. Bot. 71, 10-22.
    • Laine J, Harju P, Timonen T, Laine A, Tuittila E-S, Minkkinen K and Vasander H 2011. The intricate beauty of Sphagnum mosses - a Finnish guide to identTification. University of Helsinki Department of Forest Sciences PublicatioPns2: 1-191. I
    • Lavoie C., Marcoux K., Annie Saint-Louis A., Price J.S. 2005. The Rdynamics of a cottongrass (Eriophorum vaginatum L.) cover expansion in a vCacuum-mined peatland, southern Québec, Canada. Wetlands 25, 64-75. S U
    • Loisel J., Yu, Z., 2013. Surface vegetation patterning controls carbon accumulation in N peatlands. Geophysical Research Letters 40, 1-6, doi:10.1002/grl.50744. A
    • Magnan, G.M., Lavoiem M., Payette, S., 2012. Impact of fire on long-term vegetation M dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quat. Res. 77, 110-121. ED
    • Magny, M., 2004. Holocene climate Tvariability as reflected by mid-European lake-level fluctuations and its probaPble impact on prehistoric human settlements. Quat. Int. 113, 65-79. CE
    • Magny, M., Leuzinger, U., Bortenschlager, S., Haas, J.N., 2006. Tripartite climate C reversal in CAentral Europe 5600-5300 years ago. Quat. Res. 65, 3-19.
    • Magyari, E.K., Buczkó, K., Jakab, G., Braun, M., Pál,,Z., Karátson, D., Papp, P., 2009. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains - a multiproxy study of Holocene hydrological changes. Hydrobiologia 631, 29-63.
    • Matuszkiewicz, J.M. 2001. Zespoły leśne Polski. Wydawnictwo Naukowe PWN, Warszawa.
    • Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlen, W., Maasch, K.A., Meeker, L.D., Eric A. Meyerson, E.A., Gasse, F. (…), Steig, E.J., 2004. Holocene climate variability. Quat. Res. 62, 243-255.
    • Mauquoy, D., Barber, K.E., 1999. Evidence for climatic deteriorations associated with the decline of Sphagnum imbricatum Hornsch. ex Russ. in six ombrotrophic mires from northern England and the Scottish Borders. The Holocene 9, 423-437.
    • Mauquoy, D., van Geel, B., Blaauw, M., Speranza, A., van der Plicht, J., 20T04. Changes in solar activity and Holocene climatic shifts derived from 14C wPiggle-match dated I peat deposits. The Holocene 14, 45-52. R
    • Mauquoy, D., van Geel, B., 2007. Mire and peat macros. In: S.AC.Elias (ed.), Encyclopedia of Quaternary Science, vol. 3. pp. 2315-2336. ElseviSerScience, Amsterdam, NL. U
    • Mauquoy, D., Yeloff, D., van Geel, B., Charman, D., Blundell, A., 2008. Two decadally N resolved records from north-west European peat bogs show rapid climate A changes associated with solar variability during the mid-late Holocene. J. Quat. Sci. M 23, 745-763. D
    • Mirek, Z., Piękoś-Mirkowa, H., Zając, A., Zając, M., 2002. Flowering plants and E Pteridophytes of Poland. A cThecklist. W. Szafer Institute of Botany, Polish Academy of Sciences, PL. P E
    • Miserere, L., Montacchini, F., Buffa, G., 2003. Ecology of some mire and bog plant C communities in the western Italian Alps. J. Limnol. 62, 88-96. C
    • Ochyra, R., ŻarnowAiec, J., Bednarek-Ochyra, H., 2003. Census catalogue of Polish mosses. W. Szafer Institute of Botany, Polish Academy of Sciences, PL.
    • Onac, B.P., Constantin, S., Lundberg, J., Lauritzen, S.E., 2002. Isotopic climate record in a Holocene stalagmite from Ursilor Cave (Romania). J. Quat. Sci. 17, 319-327.
    • Perşoiu, I. 2010. Reconstruction of Holocene Geomorphological Evolution of Somesu Mic Valley (Unpublished PhD thesis). “A. I. Cuza” University, Iasi, RO.
    • Reille, M., 1992. Pollen et spores d'Europe et d'Afrique du nord. Laboratoire de Botanique Historique et Palynologie Marseille.
    • Reille, M., 1995. Pollen et spores d'Europe et d'Afrique du nord. Supplément 1. Laboratoire de Botanique Historique et Palynologie Marseille.
    • Cheng, H., Edwards, R.L. (…), van der Plicht, J., 2013. Intcal13 and MarinTe13 Radiocarbon Age Calibration Curves 0-50,000 Years Cal BP. Radiocarbon 55, P1869-1887. I
    • Roland, T.P. Caseldine, C.J., Charman, D.J., Turney, C.S.M., AmeRsbury M.J., 2014. Was there a „4.2 ka event‟ in Great Britain and Ireland? EvidCence from the peatland record. Quat. Sci. Rev. 83, 11-27. S U
    • Roland, T.P., Daley, T.J., Caseldine, C.J., Charman, D.J., Turney, C.S.M., Amesbury, M.J., N Thompson, G.J., Woodley, E.J., 2015. The 5.2 ka climate event: Evidence from stable A isotope and multi-proxy palaeoecological peatland records in Ireland. Quat. Sci. Rev., M 124, 209-223. D
    • Schnitchen, C., Chapman, D.J., Magyari, E., Braun, M., Grigorszky, I., Tothmeresz, B., E Molnar, M. & Szanto, Zs., T2006. Reconstructing hydrological variability from testate amoebae analysis in CarpPathian peatlands. J. Paleolimnol. 36, 1-17. E
    • Schoning, K., Charman, D.J., Wastegård, S., 2005. Reconstructed water tables from two C ombrotrophic mires in eastern central Sweden compared with instrumental C meteorologAical data. The Holocene 15, 111-118.
    • Seppä. H., Poska, A., 2004. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quat. Res. 61, 22-31.
    • Sillasoo, Ü., Väliranta, M., Tuittila, E-S., 2011. Fire history and vegetation recovery in two raised bogs at the Baltic Sea. J. Veg. Sci. 22, 1084-1093.
    • Silvan, N., Tuittila, E.-S., Vasander, H., Laine, J., 2004. Eriophorum vaginatum plays a major role in nutrient retention in boreal peatlands. Ann. Bot. Fenn. 41, 189-199.
    • Swindles, G.T., Morris, P.J., Baird, A.J., Blaauw, M., Plunkett, G., 2012. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Lett. 39, L11401, doi:10.1029/2012GL051500.
    • Swindles, G.T., Turner, T.E., Roe, H.M., Rea, H.A., Hall, V.A. 2015. TestiTngthe cause of the Sphagnum austinii (Sull. ex Aust.) decline: multiproxy evidePnce from a raised bog I in Northern Ireland. Rev. Palaeobot. Palynol. 213, 17-26. R
    • Tanţău, I., Reille, M., de Beaulieu, J.L., Fărcaş, S., Brewer, S., 2C009. Holocene vegetation history in Romanian Subcarpathians. Quat. Res. 72, 1S64-173. U
    • Tanţău, I., Geantă, A., Feurdean, A., Tămas, T., 2014a. Pollen analysis from a high altitude N site in Rodna Mountains (Romania). Carpathian J. Earth Environ. Sci. 9, 23-30. A
    • Tanţău, I., Feurdean, A., de Beaulieu J.L ., et al. 2014b. Vegetation sensitivity to climate M changes and human impact in the Harghita Mountains (Eastern Romanian D Carpathians) over the past 15 000 years. J. Quat. Sci. 29, 141-152. E
    • Tinner, W., Lotter, A.F., 2001. CenTtral European vegetation response to abrupt climate change at 8.2 ka. Geology P29, 2551-2554. E
    • Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am. Meteorol. C Soc. 79, 61-78C.
    • Väliranta, M., KorhAola. A., Seppä. H., Tuittila, E.-S., Sarmaja-Korjonen, K., Laine, J., Alm, J., 2007. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The Holocene 17, 1093-1107.
    • van der Knaap, W.O., Lamentowicz, M., van Leeuwen, J.F.N., Hangartner, S., Leuenberger, M., Mauquoy, D., Goslar, T., Mitchell, E.A.D., Lamentowicz, Ł., Kamenik, C., 2011. A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps. Quat. Sci. Rev. 30, 3467-3480.
    • van Geel, B., van der Plicht, J., Kilian, M., Klaver, E., Kouwenberg, J., Renssen, H., Reynaud-Farrera, I., Waterbolk, H., 1998. The sharp rise of Delta C-14 ca, 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40, 535-550. T
    • Walker, D., Walker, P. M., 1961. Stratigraphic evidence of regeneration Pinsome Irish bogs. I J. Ecol. 49, 169-85 R
    • Wein, R.W., 1973. Biological flora of the British Isles. EriophoCrum vaginatum L. J. Ecol. 61, 601-615. S U
    • Wein, R.W. and Bliss, L.C., 1973. Changes in arctic Eriophorum tussock communities following fire. Ecology 54, 845-52. AN M
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article