LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gałka, Mariusz; Tanţău, Ioan; Ersek, Vasile; Feurdean, Angelica (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: F800, F600
We present a high-resolution, continuous plant macrofossil remains record complemented by a pollen sequence from Tăul Muced bog, in the Eastern Carpathian Mountains (Romania). The record spans the last 9000 years and we test whether peatland development in the Eastern Carpathians is linked to climate change or to autogenic succession. We find that Sphagnum magellanicum was the dominant peat-forming species for ca. 8000 years but we also identify ten phases of increased representation of Eriophorum vaginatum at approximately 8100, 7550, 6850, 6650, 5900, 4650, 3150, 1950, 1450, 750 cal yr. BP. Visual inspection and wavelet analysis show that the episodic increases in the relative abundances of Eriophorum vaginatum were simultaneous with decreased abundances of Sphagnum magellanicum and Sphagnum angustifolium. Comparison with published palaeoclimatic records in this region suggests that these cyclical successions of S. magellanicum and E. vaginatum appear to be primarily a result of climate changes, with E. vaginatum developing mainly during dry phases and S. magellanicum during wetter periods. We therefore suggest that the development of this peatland was largely influenced by changing climatic conditions, although the role of autogenic plant succession cannot be excluded. Our results show the value of ombrotrophic peat deposits as archives of past climate change.

Share - Bookmark

Cite this article