LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yao, Yong T.; Alderson, Kim L.; Alderson, Andrew (2016)
Publisher: Springer Nature
Journal: Cellulose
Languages: English
Types: Article
Subjects: Polymers and Plastics
Energy minimizations for unstretched and stretched cellulose models using an all-atom empirical force field (Molecular Mechanics) have been performed to investigate the mechanism for auxetic (negative Poisson’s ratio) response in crystalline cellulose Iβ from kraft cooked Norway spruce. An initial investigation to identify an appropriate force field led to a study of the structure and elastic constants from models employing the CVFF force field. Negative values of on-axis Poisson’s ratios nu31 and nu13 in the x1-x3 plane containing the chain direction (x3) were realized in energy minimizations employing a stress perpendicular to the hydrogen-bonded cellobiose sheets to simulate swelling in this direction due to the kraft cooking process. Energy minimizations of structural evolution due to stretching along the x3 chain direction of the ‘swollen’ (kraft cooked) model identified chain rotation about the chain axis combined with inextensible secondary bonds as the most likely mechanism for auxetic response.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alderson A, Alderson K (2007) Auxetic materials. Proc Inst Mech Eng Part G J Aerosp Eng 221:565-576
    • Alderson KL, Evans KE (1992) The fabrication of microporous polyethylene having a negative Poisson's ratio. Polymer 33:4435-4438
    • Alderson A, Evans KE (2002) Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys Rev Lett 89:225503-1
    • Alderson KL, Pickles AP, Neale PJ, Evans KE (1994) Auxetic polyethylene: the effect of a negative Poisson's ratio on hardness. Acta Metall Mater 42:2261-2266
    • Alderson KL, Webber RS, Mohammed UF, Murphy E, Evans KE (1997) An experimental study of ultrasonic attenuation in microporous polyethylene. Appl Acoust 50:23-33
    • Alderson KL, Alderson A, Smart G, Simkins VR, Davies PJ (2002) Auxetic polypropylene fibres Part 1-manufacture and characterisation. Plast Rubbers Compos 31:344-349
    • Alderson A, Davies PJ, Williams MR, Evans KE, Alderson KL, Grima JN (2005) Modelling of the mechanical and mass transport properties of auxetic molecular sieves: an idealised organic (polymeric honeycomb) host-guest system. Mol Simul 31:897-905
    • Asensio JL, Martin-Pastor M, Jimenez-Barbero J (1995) The use of CVFF and CFF91 force fields in conformational analysis of carbohydrate molecules. Comparison with AMBER molecular mechanics and dynamics calculations for methyl a-lactoside. Int J Biol Macromol 17:137-148
    • Atalla RH, Van der Hart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283-285
    • Baughman RH, Galva˜o DS (1993) Crystalline network with unusual predicted mechanical and thermal properties. Nature 365:735-737
    • Bazooyar F, Momany FA, Bolton K (2012) Validating empirical force fields for molecular-level simulation of cellulose dissolution. Comput Theor Chem 984:119-127
    • Caddock BD, Evans KE (1989) Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation. J Phys D Appl Phys 22:1877-1882
    • Choi JB, Lakes RS (1992) Nonlinear properties of metallic cellular materials with a negative Poisson's ratio. J Mater Sci 27:5375-5381
    • Claffey W, Blackwell J (1976) Electron diffraction of valonia cellulose. A quantitative interpretation. Biopolymers 15:1903-1915
    • Diddens I, Murphy B, Krisch M, Mu¨ller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755-9759
    • Dri FL, Hector LG Jr, Moon RJ, Zavattieri PD (2013) Anisotropy of the elastic properties of crystalline cellulose Ib from first principles density functional theory with Van der Waals interactions. Cellulose 20:2703-2718
    • Dri FL, Wu X, Moon RJ, Martini A, Zavattieri PD (2015) Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Ib. Comput Mater Sci 109:330-340
    • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291-307
    • Evans KE (1990) Tailoring the negative Poisson's ratio. Chem Ind 20:654-657
    • Evans KE (1991) The design of doubly curved sandwich panels with honeycomb cores. Compos Struct 17:95-111
    • Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking. Adv Mater 12:617-624
    • Evans KE, Caddock BD (1989) Microporous materials with negative Poisson's ratio: II. Mechanisms and interpretation. J Phys D Appl Phys 22:1883-1887
    • Evans KE, Nkansah M, Hutchison IJ, Rogers SC (1991) Molecular network design. Nature 353:124
    • Evans KE, Alderson A, Christian FR (1995) Auxetic two-dimensional polymer networks: an example of tailoring geometry for specific mechanical properties. J Chem Soc Faraday Trans 91:2671-2680
    • Finkenstadt VL, Millane RP (1998) Crystal structure of valonia cellulose Ib. Macromolecules 31:7776-7783
    • Foley BL, Tessier MB, Woods RJ (2012) Carbohydrate force fields. Wiley Interdiscip Rev Comput Mol Sci 2(4):652-697
    • Franke M, Magerle R (2011) Locally auxetic behavior of elastomeric polypropylene on the 100 nm length scale. ACS Nano 5:4886-4891
    • French AD (2014) Idealized powder diffraction patterns for cellulose Polymorphs. Cellulose 21:885-896
    • Friis EA, Lakes RS, Park JB (1988) Negative Poisson's ratio polymeric and metallic materials. J Mater Sci 23:4406-4414
    • Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of three-dimensional. Cellular materials. Proc R Soc Lond A382:25-42
    • Gillis PP (1969) Effect of hydrogen bonds on the axial stiffness of crystalline native cellulose. J Polym Sci Part A-2 7:783-794
    • Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson's ratio and modern materials. Nat Mater 10:823-837
    • Grima JN, Jackson R, Alderson A, Evans KE (2000) Do zeolites have negative Poisson's ratios. Adv Mater 12:1912-1918
    • Grima JN, Alderson A, Evans KE (2005) Auxetic behaviour from rotating rigid units. Phys Status Solidi B 242:561-575
    • Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell Jr AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543-2564
    • Haas S, Batlogg B, Besnard C, Schiltz M, Kloc C, Siegrist T (2007) Large uniaxial negative thermal expansion in pentacene due to steric hindrance. Phys Rev B Condens Matter Mater Phys 76:205203-1-205203-5
    • Hagler AT, Dauber P, Lifson S (1979a) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C=O…H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids. J Am Chem Soc 101:5131-5141
    • Hagler AT, Lifson S, Dauber P (1979b) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields. J Am Chem Soc 101:5122-5130
    • Hardy BJ, Sarko A (1993) Conformational analysis and molecular dynamics simulation of cellobiose and larger cellooligomers. J Comput Chem 7:831-847
    • He C, Liu P, Griffin AC (1998) Toward negative Poisson's ratio polymers through molecular design. Macromolecules 31:3145-3147
    • Homans SW (1990) A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Mana1-3Manb1- 4GlcNAc. Biochemistry 29:9110-9118
    • Howell B, Prendergast P, Hansen L (1991) Acoustic behaviour of negative Poisson's ratio materials. DTRC-SME-91/01, David Taylor Research Centre, Annapolis
    • Josefsson G, Tanem BS, Li Y, Vullum PE, Gamstedt EK (2013) Prediction of elastic properties of nanofibrillated cellulose from micromechanical modeling and nano-structure characterization by transmission electron microscopy. Cellulose 20:761-770
    • Keskar NR, Chelikowsky JR (1992) Negative Poisson ratios in crystalline SiO2 from 1st-principles calculations. Nature 358:222-224
    • Kirschner KN, Yongye AB, Tschampel SM, Gonza´les-Outeirin˜o J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622-655
    • Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29:5695-5699
    • Lakes RS (1987) Foam structures with a negative Poisson's ratio. Science 235:1038-1040
    • Lins RD, Hu¨nenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26:1400-1412
    • Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven, p 310
    • Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403-422
    • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Ib. Carbohydr Res 341:138-152
    • Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155-2166
    • Matthews JF, Beckham GT, BergenstrA˚ hle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Ib simulations with three carbohydrate force fields. J Chem Theory Comput 8:735-748
    • Mayo SL, Olafson BD, Goddard WA III (1990) A generic force field for molecular simulations. J Phys Chem 94:8897-8909
    • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394-2403
    • Miyamoto H, Schnupf U, Crowley MF, Brady JW (2016) Comparison of the simulations of cellulosic crystals with three carbohydrate force fields. Carbohydr Res 422:17-23
    • Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson's ratio of cellulose Ib and cellulose II. J Polym Sci Part B Polym Phys 42:1206-1211
    • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074-9082
    • Nkansah MA, Evans KE, Hutchinson IJ (1994) Modelling the mechanical properties of an auxetic molecular network. Mod Simul Mater Sci Eng 2:337-352
    • Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Mu¨ller M, Serimaa R (2006) Negative Poisson ratio of crystalline cellulose in Kraft cooked Norway spruce. Biomacromolecules 7:1521-1528
    • Rappe´ AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024-10035
    • Ravirala N, Alderson A, Alderson KL, Davies PJ (2005) Expanding the range of auxetic polymeric products using a novel melt-spinning route. Phys Status Solidi B 242:653-664
    • Rigby D, Sun H, Eichinger BE (1997) Computer simulations of poly(ethylene oxide): force field, PVT diagram and cyclization behaviour. Polym Int 44:311-330
    • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651-660
    • Salme´n L (2004) Micromechanical understanding of the cellwall structure. Comptes Rendus Biol 327:873-880
    • Scarpa F, Pastorino P, Garelli A, Patsias S, Ruzzene M (2005) Auxetic compliant flexible PU foams: static and dynamic properties. Phys Status Solidi B 242:681-694
    • Siebert H-C, Reuter G, Schauer R, von der Lieth C-W, Dabrowski J (1992) Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. Biochemistry 31:6962-6971
    • Simon I, Glasser L, Scheraga HA, Manley RSJ (1988) Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21:990-998
    • Stenberg N, Fellers C (2002) Out-of-plane Poisson's ratios of paper and paperboard. Nordic Pulp Paper Res J 17:387-394
    • Sun H (1998) COMPASS: an ab initio forcefield optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B 102:7338-7364
    • Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force-field for polycarbonates. J Am Chem Soc 116:2978-2987
    • Sun H, Ren P, Fried JR (1998) The COMPASS force field parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229-246
    • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstro¨m T, Sampson WW, Eichhorn SJ (2012) Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13:1340-1349
    • Tashiro K, Kobayashi M (1991) Theoretical evaluation of 3-dimensional elastic-constants of native and regenerated celluloses-role of hydrogen-bonds. Polymer 32:1516-1526
    • Van der Hart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1465-1472
    • Verma P, Shofner ML, Griffin AC (2014) Deconstructing the auxetic behavior of paper. Phys Status Solidi B 251:289-296
    • Wada M, Hori R, Kim U-J, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Ib and its high-temperature phase. Polym Degrad Stab 95:1330-1334
    • Yeganeh-Haeri Y, Weidner DJ, Parise JB (1992) Elasticity of acristobalite: a silicon dioxide with a negative Poisson's ratio. Science 257:650-652
    • Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struct Biol 171:133-141
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    55
    55%
  • No similar publications.

Share - Bookmark

Cite this article