LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stansbury, Amanda L.; G?tz, Thomas; Deecke, Volker B.; Janik, Vincent M. (2015)
Publisher: The Royal Society
Journal: Proceedings of the Royal Society B: Biological Sciences
Languages: English
Types: Article
Subjects: 14, Z600, Z601, chemosensory cues, QH301 Biology, QL Zoology, QH301, 1001, 60, QL, Research Articles, Z608, acoustic fish tags, dinner bell effect, anthropogenic noise, pinnipeds
This study was conducted under Home Office licence number 60/3303 Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success. Publisher PDF Peer reviewed

Share - Bookmark

Funded by projects

Cite this article