LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tyrrell, EJ; Tomic, S
Publisher: ACS Publication
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Chemical Physics, Physics::Atomic and Molecular Clusters
Controlled reduction of graphene oxide is an alternative and promising method to tune the electronic and optically active energy gap of this two-dimensional material in the energy range of the visible light spectrum. By means of ab initio calculations, based on hybrid density functional theory, that combine the Hartree–Fock method with the generalized gradient approximation (GGA), we investigated the electronic, optical, and radiative recombination properties of partially reduced graphene oxide, modelled as small islands of pristine graphene formed in an infinite sheet of graphene oxide. We predict that tuning of optically active gaps, in the wide range from ∼6.5 eV to ∼0.25 eV, followed by the electron radiative transition times in the range from ns to μs, can be effected by controlling the level of oxidization.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Pal, B. N.; Ghosh, Y.; Brovelli, S.; Laocharoensuk, R.; Klimov, V.
    • I.; Hollingsworth, J. A.; Htoon, H. Giant CdSe/CdS Core/Shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 2012, 12, 331−336.
    • (2) Kamat, P. V. Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18737− 18753.
    • (3) Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H.
    • Colloidal Quantum-dot photodetectors exploiting multiexciton generation. Science 2009, 324, 1542−1544.
    • (4) Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391−400.
    • (5) Caruge, J.-M.; Chan, Y.; Sundar, V.; Eisler, H. J.; Bawendi, M. G.
    • Rev. B 2004, 70, 085316.
    • (6) Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermannn, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-exciton optical gain in semiconductor nanocrystals. Nature 2007, 447, 441−446.
    • (7) Shabaev, A.; Efros, A. L.; Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 2006, 6, 2856−2863.
    • (8) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011, 334, 1530−1533.
    • (9) Trinh, M. T.; Polak, L.; Schins, J. M.; Houtepen, A. J.; Vaxenburg, R.; Maikov, G. I.; Grinbom, G.; Midgett, A. G.; Luther, J. M.; Beard, M. C.; Nozik, A. J.; Bonn, M.; Lifshitz, E.; Siebbeles, L. D. A.
    • Anomalous independence of multiple exciton generation on different group IV-VI quantum dot architectures. Nano Lett. 2011, 11, 1623− 1629.
    • (10) Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with twodimensional electronic structure. Nat. Mater. 2011, 10, 936−941.
    • (11) Jasieniak, J.; Califano, M.; Watkins, S. E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals.
    • ACS Nano 2011, 5, 5888−5902.
    • (12) Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466−11467.
    • (13) Li, J. J.; Tsay, J. M.; Michalet, X.; Weiss, S. Wavefunction engineering: from quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chem.
    • Phys. 2005, 318, 82−90.
    • (14) Xie, R.; Kolb, U.; Li, J.; Basche,́ T.; Mews, A. Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5 S/ ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480−7488.
    • (15) Piryatinski, A.; Ivanov, S. A.; Tretiak, S.; Klimov, V. I. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett.
    • (16) Kumar, S.; Jones, M.; Lo, S.; Scholes, G. D. Nanorod heterostructures showing photoinduced charge separation. Small 2007, 3, 1633−1639.
    • (17) Zhong, H.; Zhou, Y.; Yang, Y.; Yang, C.; Li, Y. Synthesis of type II CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications. J. Phys. Chem. C 2007, 111, 6538− 6543.
    • (18) Itzhakov, S.; Shen, H.; Buhbut, S.; Lin, H.; Oron, D. Type-II quantum-dot-sensitized solar cell spanning the visible and nearinfrared spectrum. J. Phys. Chem. C 2013, 117, 22203−22210.
    • (19) McElroy, N.; Page, R.; Espinbarro-Valazquez, D.; Lewis, E.; Haigh, S.; O'Brien, P.; Binks, D. Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer. Thin Solid Films 2014, 560, 65− 70.
    • (20) Brovelli, S.; Schaller, R. D.; Crooker, S. A.; Garcia-Santamaria, F.; Chen, Y.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Klimov, V. I. Nano-engineered electron-hole exchange interaction controls exciton dynamics in core-shell semiconductor nanocrystals. Nat.
    • Commun. 2011, 2, 280.
    • (21) Oron, D.; Kazes, M.; Banin, U. Multiexcitons in type-II colloidal semiconductor quantum dots. Phys. Rev. B 2007, 75, 035330.
    • (22) McDonald, P. G.; Tyrrell, E. J.; Shumway, J.; Smith, J. M.; Galbraith, I. Tuning biexciton binding and antibinding in core/shell quantum dots. Phys. Rev. B 2012, 86, 125310.
    • (23) Ivanov, S. A.; Nanda, J.; Piryatinski, A.; Achermann, M.; Balet, L.
    • P.; Bezel, I. V.; Anikeeva, P. O.; Tretiak, S.; Klimov, V. I. Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime. J. Phys. Chem. B 2004, 108, 10625−10630.
    • (24) Nanda, J.; Ivanov, S. A.; Achermann, M.; Bezel, I.; Piryatinski, A.; Klimov, V. I. Light amplification in the single-exciton regime using exciton-exciton repulsion in type-II nanocrystal quantum dots. J. Phys.
    • Chem. C 2007, 111, 15382−15390.
    • (25) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover Publications, Inc.: Mineola, NY, 1982.
    • (26) Fonoberov, V. A.; Pokatilov, E. P.; Balandin, A. A. Exciton states and optical transitions in colloidal CdS quantum dots: Shape and dielectric mismatch effects. Phys. Rev. B 2002, 66, 085310.
    • (27) Meneńdez-Proupin, E.; Trallero-Giner, C. Electric-field and exciton structure in CdSe nanocrystals. Phys. Rev. B 2004, 69, 125336.
    • (28) Vukmirovc,́ N.; Tomic,́ S. Plane wave methodology for single quantum dot electronic structure calculations. J. Appl. Phys. 2008, 103, 103718.
    • (29) Califano, M.; Franceschetti, A.; Zunger, A. Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys. Rev. B 2007, 75, 115401.
    • (30) Korkusinski, M.; Voznyy, O.; Hawrylak, P. Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals. Phys. Rev. B 2010, 82, 245304.
    • (31) Allan, G.; Delerue, C. Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 2012, 86, 165437.
    • (32) Efros, A. L.; Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475−521.
    • (33) Franceschetti, A.; Williamson, A.; Zunger, A. Addition spectra of quantum dots: the role of dielectric mismatch. J. Phys. Chem. B 2000, 104, 3398−3401.
    • (34) Climente, J. I.; Royo, M.; Movilla, J. L.; Planelles, J. Strong configuration mixing due to dielectric confinement in semiconductor nanorods. Phys. Rev. B 2009, 79, 161301.
    • (35) Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403−4409.
    • (36) Pokatilov, E. P.; Fonoberov, V. A.; Fomin, V. M.; Devreese, J. T.
    • Development of an eight-band theory for quantum dot heterostructures. Phys. Rev. B 2001, 64, 245328.
    • (37) Efros, A. L.; Rosen, M. Quantum size level structure of narrowgap semiconductor nanocrystals: effect of band coupling. Phys. Rev. B 1998, 58, 7120−7135.
    • (38) Bolcatto, P. G.; Proetto, C. R. Partially confined excitons in semiconductor nanocrystals with a finite size dielectric interface. J.
    • Phys.: Condens. Matter 2001, 13, 319.
    • (39) Tyrrell, E. J.; Smith, J. M. Effective mass modeling of excitons in type-II quantum dot heterostructures. Phys. Rev. B 2011, 84, 165328.
    • (40) Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566−5571.
    • (41) Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys.
    • Rev. B 1996, 54, 4843−4856.
    • (42) Gong, K.; Zeng, Y.; Kelley, D. F. Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/ CdSe nanocrystals. J. Phys. Chem. C 2013, 117, 20268−20279.
    • (43) Ma, X.; Mews, A.; Kipp, T. Determination of electronic energy levels in type-II CdTe-core/CdSe-shell and CdSe-core/CdTe-shell nanocrystals by cyclic voltammetry and optical spectroscopy. J. Phys.
    • Chem. C 2013, 117, 16698−16708.
    • (44) Cai, X.; Mirafzal, H.; Nguyen, K.; Leppert, V.; Kelley, D. F.
    • Spectroscopy of CdTe/CdSe type-II nanostructures: morphology, lattice mismatch, and band-bowing effects. J. Phys. Chem. C 2012, 116, 8118−8127.
    • (45) Tomic,́ S. Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design. Appl. Phys. Lett. 2013, 103, 072112.
    • (46) de Mello Donega,́ C.; Koole, R. Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J. Phys. Chem. C 2009, 113, 6511−6520.
    • (47) Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev.
    • B 1996, 53, 16338−16346.
    • (48) Schulz, S.; Czycholl, G. Tight-binding model for semiconductor nanostructures. Phys. Rev. B 2005, 72, 165317.
    • (49) Rowe, J. M.; Nicklow, R. M.; Price, D. L.; Zanio, K. Lattice dynamics of cadmium telluride. Phys. Rev. B 1974, 10, 671−675.
    • (50) Wang, L.-W.; Zunger, A. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys. Rev. B 1996, 53, 9579−9582.
    • (51) The factor of 1/4 comes from the Clebsch−Gordan coefficient in eq 5 when L = Lz = 1, je = 1/2, me = 1/2, jh = 3/2, and mh = 1.
    • (52) Additional calculations for the 1S(1e/)2nS(3h/)2 (n = 1, 2) states show that the relative error between exciton energies is a function of ac and as, but does not exceed 1%.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article