LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Korolkov, Vladimir V.; Svatek, Simon A.; Allen, Stephanie; Roberts, Clive J.; Tendler, Saul J.B.; Taniguchi, Takashi; Watanabe, Kenji; Champness, Neil R.; Beton, Peter H. (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
A two-dimensional porous network formed from perylene tetracarboxylic diimide (PTCDI) and melamine may be deposited from\ud solution on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN) and molybdenum disulphide (MoS2). Images acquired using high resolution atomic force microscopy (AFM) operating under ambient conditions have revealed that the network forms extended orderedmonolayers (41 lm2) on HOPG and hBN whereas on MoS2 much smaller islands are observed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 L. Bartels, Nat. Chem., 2010, 2, 87-95.
    • 2 T. Kudernac, S. Lei, J. A. A. W. Elemans and S. De Feyter, Chem. Soc. Rev., 2009, 38, 402-421.
    • 3 A. G. Slater (n´ee Phillips), P. H. Beton and N. R. Champness, Chem. Sci., 2011, 2, 1440.
    • 4 J. V Barth, J. Weckesser, C. Cai, P. Gu¨nter, L. Bu¨rgi, O. Jeandupeux and K. Kern, Angew. Chem., Int. Ed., 2000, 1230-1234.
    • 5 S. B. Lei, C. Wang, S. X. Yin, H. N. Wang, F. Xi, H. W. Liu, B. Xu, L. J. Wan and C. L. Bai, J. Phys. Chem. B, 2001, 105, 10838-10841.
    • 6 S. Griessl, M. Lackinger, M. Edelwirth, M. Hietschold and W. M. Heckl, Single Mol., 2002, 3, 25-31.
    • 7 K. G. Nath, O. Ivasenko, J. A. Miwa, H. Dang, J. D. Wuest, A. Nanci, D. F. Perepichka and F. Rosei, J. Am. Chem. Soc., 2006, 128, 4212-4213.
    • 8 D. L. Keeling, N. S. Oxtoby, C. Wilson, M. J. Humphry, N. R. Champness and P. H. Beton, Nano Lett., 2003, 3, 9-12.
    • 9 S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V Barth and K. Kern, Nat. Mater., 2004, 3, 229-233.
    • 10 A. Dmitriev, H. Spillmann, N. Lin, J. V Barth and K. Kern, Angew. Chem., Int. Ed., 2003, 42, 2670-2673.
    • 11 L. Gross, F. Mohn, N. Moll, P. Liljeroth and G. Meyer, Science, 2009, 325, 1110-1114.
    • 12 P. Rahe, R. Lindner, M. Kittelmann, M. Nimmrich and A. Ku¨hnle, Phys. Chem. Chem. Phys., 2012, 14, 6544-6548.
    • 13 S. Burke, J. Mativetsky, S. Fostner and P. Gru¨tter, Phys. Rev. B, 2007, 76, 035419.
    • 14 S. Maier, L.-A. Fendt, L. Zimmerli, T. Glatzel, O. Pfeiffer, F. Diederich and E. Meyer, Small, 2008, 4, 1115-1118.
    • 15 J. Zhang, P. Chen, B. Yuan, W. Ji, Z. Cheng and X. Qiu, Science, 2013, 342, 611-614.
    • 16 A. M. Sweetman, S. P. Jarvis, H. Sang, I. Lekkas, P. Rahe, Y. Wang, J. Wang, N. Champness, L. Kantorovich and P. Moriarty, Nat. Commun., 2014, 5, 3931.
    • 17 V. V. Korolkov, S. Allen, C. J. Roberts and S. J. B. Tendler, J. Phys. Chem. C, 2012, 116, 11519-11525.
    • 18 V. V. Korolkov, N. Mullin, S. Allen, C. J. Roberts, J. K. Hobbs and S. J. B. Tendler, Phys. Chem. Chem. Phys., 2012, 14, 15909.
    • 19 J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness and P. H. Beton, Nature, 2003, 424, 1029-1031.
    • 20 L. M. A. Perdig˜ao, E. W. Perkins, J. Ma, P. A. Staniec, B. L. Rogers, N. R. Champness and P. H. Beton, J. Phys. Chem. B, 2006, 110, 12539-12542.
    • 21 R. Madueno, M. T. R¨ais¨anen, C. Silien and M. Buck, Nature, 2008, 454, 618-621.
    • 22 H. J. Karmel, T. Chien, V. Demers-Carpentier, J. J. Garramone and M. C. Hersam, J. Phys. Chem. Lett., 2014, 5, 270-274.
    • 23 I. Horcas, R. Fern´andez, J. M. Go´mez-Rodr´ıguez, J. Colchero, J. Go´mez-Herrero and A. M. Baro, Rev. Sci. Instrum., 2007, 78, 013705.
    • 24 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, Nat. Nanotechnol., 2010, 5, 722-726.
    • 25 M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod and B. J. LeRoy, Nat. Phys., 2012, 8, 382-386.
    • 26 C. Ludwig, B. Gompf, J. Petersen, R. Strohmaier and W. Eisenmenger, Z. Phys. B, 1994, 93, 365-373.
    • 27 A. K. Geim and I. V. Grigorieva, Nature, 2013, 499, 419-425.
    • 28 T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. a. Ponomarenko, A. K. Geim, K. S. Novoselov and A. Mishchenko, Nat. Nanotechnol., 2013, 8, 100-103.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article