LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schlueter, Urte; Bräutigam, Andrea; Gowik, Udo; Melzer, Michael; Christin, Pascal-Antoine; Kurz, Samantha; Mettler-Altmann, Tabea; Weber, Andreas P. M. (2017)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Bundle sheath, C-4 photosynthesis, C-3-C-4 intermediacy, Moricandia, evolution, glycine decarboxylase
ddc: ddc:580
Evolution of C-4 photosynthesis is not distributed evenly in the plant kingdom. Particularly interesting is the situation in the Brassicaceae, because the family contains no C-4 species, but several C-3-C-4 intermediates, mainly in the genus Moricandia. Investigation of leaf anatomy, gas exchange parameters, the metabolome, and the transcriptome of two C-3-C-4 intermediate Moricandia species, M. arvensis and M. suffruticosa, and their close C-3 relative M. moricandioides enabled us to unravel the specific C-3-C-4 characteristics in these Moricandia lines. Reduced CO2 compensation points in these lines were accompanied by anatomical adjustments, such as centripetal concentration of organelles in the bundle sheath, and metabolic adjustments, such as the balancing of C and N metabolism between mesophyll and bundle sheath cells by multiple pathways. Evolution from C-3 to C-3-C-4 intermediacy was probably facilitated first by loss of one copy of the glycine decarboxylase P-protein, followed by dominant activity of a bundle sheath-specific element in its promoter. In contrast to recent models, installation of the C-3-C-4 pathway was not accompanied by enhanced activity of the C-4 cycle. Our results indicate that metabolic limitations connected to N metabolism or anatomical limitations connected to vein density could have constrained evolution of C-4 in Moricandia.

Share - Bookmark

Funded by projects

Cite this article