LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chen, Taolue; Feng, Yuan; Rosenblum, David S.; Su, Guoxin (2014)
Publisher: Springer
Languages: English
Types: Unknown
Subjects:
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Allender, E., Bu¨rgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Comput. 38(5), 1987-2006 (2009)
    • 2. Allender, E., Ogihara, M.: Relationships among PL, #L, and the determinant. ITA 30(1), 1-21 (1996)
    • 3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
    • 4. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326-340. Springer, Heidelberg (2011)
    • 5. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of Interval Markov Chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 32-46. Springer, Heidelberg (2013)
    • 6. Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499-513. Springer, Heidelberg (1995)
    • 7. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Simon, J. (ed.) STOC, pp. 460-467. ACM (1988)
    • 8. Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 270-285. Springer, Heidelberg (2012)
    • 9. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of Interval Markov Chains. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 302-317. Springer, Heidelberg (2008)
    • 10. Chen, T., Feng, Y., Rosenblum, D.S., Su, G.: Perturbation analysis in verification of discretetime Markov chains. Technical report, Middlesex University London (2014), http://www.cs.mdx.ac.uk/staffpages/taoluechen/ pub-papers/concur14-full.pdf
    • 11. Chen, T., Hahn, E., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for Markov decision processes. In: TASE 2013, pp. 85-92 (July 2013)
    • 12. Chen, T., Han, T., Kwiatkowska, M.Z.: On the complexity of model checking interval-valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210-216 (2013)
    • 13. Cho, G.E., Meyer, C.D.: Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra Appl. 335, 137-150 (2000)
    • 14. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280-294. Springer, Heidelberg (2005)
    • 15. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323-354 (2004)
    • 16. Donaldson, R., Gilbert, D.: A model checking approach to the parameter estimation of biochemical pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269-287. Springer, Heidelberg (2008)
    • 17. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. J. ACM 56(1) (2009)
    • 18. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: ICSE 2011, New York, NY, USA, pp. 341-350 (2011)
    • 19. Hahn, E., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. International Journal on Software Tools for Technology Transfer 13(1), 3-19 (2011)
    • 20. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146-161. Springer, Heidelberg (2011)
    • 21. Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter synthesis for probabilistic timebounded reachability. In: RTSS, pp. 173-182. IEEE Computer Society (2008)
    • 22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic realtime systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585-591. Springer, Heidelberg (2011)
    • 23. Murdock, J.A.: Perturbation: Theory and Method. John Wiley & Sons, Inc. (1991)
    • 24. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527-542. Springer, Heidelberg (2013)
    • 25. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)
    • 26. Sahni, S.: Computationally related problems. SIAM Journal on Computing 3, 262-279 (1974)
    • 27. Schweitzer, P.J.: Perturbation theory and finite Markov chains. Journal of Applied Probability 5(2), 401-413 (1968)
    • 28. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394-410. Springer, Heidelberg (2006)
    • 29. Solan, E., Vieille, N.: Perturbed Markov chains. J. Applied Prob. 40(1), 107-122 (2003)
    • 30. Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of perturbed probabilistic systems. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 297-312. Springer, Heidelberg (2013)
    • 31. Su, G., Rosenblum, D.S.: Perturbation analysis of stochastic systems with empirical distribution parameters. In: ICSE, pp. 311-321. ACM (2014)
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article