LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Corona Prieto, Teresa; Pfaff, Florian F.; Acuña-Parés, Ferran; Draksharapu, Apparao; Whiteoak, Christopher J.; Martin- Diaconescu, Vlad; Lloret Fillol, Julio; Browne, Wesley R.; Ray, Kallol; Company Casadevall, Anna (2015)
Publisher: Wiley
Languages: English
Types: Article
Subjects: Reaccions químiques, Níquel -- Oxidació, Nickel -- Oxidation, Chemical reactions
Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a NiII precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., CH bonds, CC bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic OO bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a NiIII-oxyl compound. A highly reactive nickel-oxygen species has been spectroscopically trapped after heterolytic OO bond cleavage during the reaction of a NiII precursor with meta-chloroperbenzoic acid (HmCPBA). This species is used to carry out the oxidation of different substrates, such as olefins, sulfides, and CH bonds (see scheme)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • B. Ravel, M. Newville, Journal of Synchrotron Radiation 2005, 12, 537-541.
    • J. J. Rehr, R. C. Albers, Reviews of Modern Physics 2000, 72, 621-654.
    • Rypniewski, M. J. Maroney, S. Ciurli, Biochemical Journal 2012, 441, 1017-1026.
    • Maroney, Journal of Biological Inorganic Chemistry 2012, 17, 353- 361.
    • Musiani, M. J. Maroney, S. Ciurli, Journal of Biological Inorganic Chemistry 2014, 19, 319-334.
    • Chivers, S. S. Pochapsky, T. C. Pochapsky, M. J. Maroney, Journal of the American Chemical Society 2010, 132, 10338- 10351.
    • Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    • A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.
    • A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
    • A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835.
    • A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
    • S. Grimme, S. Ehrlich, L. Goerigk, 2011, 32, 1456-1465.
    • I. Mayer, Chem. Phys. Lett. 1983, 97, 270-274.
    • I. Mayer, Int. J. Quantum Chem. 1984, 26, 151-154.
    • R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314-7323.
    • R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.
    • F. Bieger-Kim, AIM Version 1.0. University of Applied Science, Bielefeld, Germany, 2000.
    • C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 2493-2499.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | SOLCAT
  • EC | NEWOXMET

Cite this article