Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Corona, Teresa; Pfaff, Florian F.; Acuña-Parés, Ferran; Draksharapu, Apparao; Whiteoak, Christopher; Martin-Diaconescu, Vlad; Lloret-Fillol, Julio; Browne, Wesley R.; Ray, Kallol; Company, Anna (2015)
Publisher: Wiley
Languages: English
Types: Article
Herein, we report the formation of a highly reactive nickel–oxygen species that has been trapped following reaction of a NiII precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C[BOND]H bonds, C[DOUBLE BOND]C bonds, and sulfides) than previously reported well-defined nickel–oxygen species. Remarkably, this species is formed by heterolytic O[BOND]O bond cleavage of a Ni–HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a NiIII–oxyl compound.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • B. Ravel, M. Newville, Journal of Synchrotron Radiation 2005, 12, 537-541.
    • J. J. Rehr, R. C. Albers, Reviews of Modern Physics 2000, 72, 621-654.
    • Rypniewski, M. J. Maroney, S. Ciurli, Biochemical Journal 2012, 441, 1017-1026.
    • Maroney, Journal of Biological Inorganic Chemistry 2012, 17, 353- 361.
    • Musiani, M. J. Maroney, S. Ciurli, Journal of Biological Inorganic Chemistry 2014, 19, 319-334.
    • Chivers, S. S. Pochapsky, T. C. Pochapsky, M. J. Maroney, Journal of the American Chemical Society 2010, 132, 10338- 10351.
    • Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    • A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.
    • A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
    • A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835.
    • A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
    • S. Grimme, S. Ehrlich, L. Goerigk, 2011, 32, 1456-1465.
    • I. Mayer, Chem. Phys. Lett. 1983, 97, 270-274.
    • I. Mayer, Int. J. Quantum Chem. 1984, 26, 151-154.
    • R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314-7323.
    • R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.
    • F. Bieger-Kim, AIM Version 1.0. University of Applied Science, Bielefeld, Germany, 2000.
    • C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 2493-2499.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article