LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mattos, Nathalia H.; Alves, Tiago Marcos; Omosanya, Kamaldeen O. (2016)
Publisher: Elsevier
Journal: Tectonophysics
Languages: English
Types: Article
Subjects: Geophysics, Earth-Surface Processes
This paper uses 2D and high-quality 3D seismic reflection data to assess the geometry and kinematics of the Samson Dome, offshore Norway, revising the implications of the new data to hydrocarbon exploration in the Barents Sea. The study area was divided into three (3) zones in terms of fault geometries and predominant strikes. Displacement-length (D-x) and Throw-depth (T-z) plots showed faults to consist of several segments that were later dip-linked. Interpreted faults were categorised into three families, with Type A comprising crestal faults, Type B representing large E-W faults, and Type C consisting of polygonal faults. The Samson Dome was formed in three major stages: a) a first stage recording buckling of the post-salt overburden and generation of radial faults; b) a second stage involving dissolution and collapse of the dome, causing subsidence of the overburden and linkage of initially isolated fault segments; and c) a final stage in which large fault segments were developed. Late Cretaceous faults strike predominantly to the NW, whereas NE-trending faults comprise Triassic structures that were reactivated in a later stage. Our work provides scarce evidence for the escape of hydrocarbons in the Samson Dome. In addition, fault analyses based on present-day stress distributions indicate a tendency for ‘locking’ of faults at depth, with the largest leakage factors occurring close to the surface. The Samson Dome is an analogue to salt structures in the Barents Sea where oil and gas exploration has occurred with varied degrees of success.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Acocella, V., Funiciello, R., Marotta, E., Orsi, G., de Vita, S., 2004. The role of extensional structures on experimental calderas and resurgence. J. Volcanol. Geotherm. Res. 129, 199-217. http://dx.doi.org/10.1016/S0377-0273(03)00240-3.
    • Alves, T.M., Cartwright, J., Davies, R.J., 2009. Faulting of salt-withdrawal basins during early halokinesis: effects on the Paleogene Rio Doce Canyon system (Espírito Santo Basin, Brazil). Am. Assoc. Pet. Geol. Bull. 93, 617-652.
    • Alves, T.M., 2016. Polygonal mounds in the Barents Sea reveal sustained organic productivity towards the P-T boundary. Terra Nova 28, 50-59. http://dx.doi.org/10.1111/ter. 12190.
    • Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar. Pet. Geol. 17, 797-814. http://dx.doi.org/10.1016/S0264-8172(00)00020-9.
    • Barnett, J.A., Mortimer, J., Rippon, J.H., Walsh, J.J., Watterson, J., 1987. Displacement geometry in the volume containing a single normal fault. Am. Assoc. Pet. Geol. Bull. 71, 925-937.
    • Barrère, C., Ebbing, J., Gernigon, L., 2009. Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling. Tectonophysics 470, 71-88. http://dx.doi.org/10.1016/j.tecto.2008.07.012.
    • Baudon, C., Cartwright, J., 2008a. Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, eastern Mediterranean. J. Struct. Geol. 30, 888-898. http://dx.doi.org/10.1016/j.jsg.2008.02.019.
    • Baudon, C., Cartwright, J., 2008b. The kinematics of reactivation of normal faults using high resolution throw mapping. J. Struct. Geol. 30, 1072-1084. http://dx.doi.org/10. 1016/j.jsg.2008.04.008.
    • Biddle, K.T., 1985. Glossary-strike-slip deformation, basin formation, and sedimentation. In: Biddle, K.T., Christie-Blick, N. (Eds.), Strike-Slip Deformation. Basin Formation and Sedimentation. Special Publications of SEPM, Tulsa, pp. 375-386.
    • Breivik, A.J., Gudlaugsson, S.T., Faleide, J.I., 1995. Ottar Basin, Sw Barents Sea: a major Upper Palaeozoic rift basin containing large volumes of deeply buried salt. Basin Res. 7, 299-312. http://dx.doi.org/10.1111/j.1365-2117.1995.tb00119.x.
    • Breivik, A.J., Faleide, J.I., Gudlaugsson, S.T., 1998. Southwestern Barents Sea margin: late Mesozoic sedimentary basins and crustal extension. Tectonophysics 293, 21-44.
    • Breivik, A.J., Mjelde, R., Grogan, P., Shimamura, H., Murai, Y., Nishimura, Y., Kuwano, A., 2002. A possible Caledonide arm through the Barents Sea imaged by OBS data. Tectonophysics 355, 67-97.
    • Brown, A.R., 2011. Interpretation of Three-dimensional Seismic Data (American Association of Petroleum Geologists and the Society of Exploration Geophysicists).
    • Brudy, M., Kjørholt, H., 2001. Stress orientation on the Norwegian continental shelf derived from borehole failures observed in high-resolution borehole imaging logs. Tectonophysics 337, 65-84. http://dx.doi.org/10.1016/S0040-1951(00)00299-7.
    • Bugge, T., Elvebakk, G., Fanavoll, S., Mangerud, G., Smelror, M., Weiss, H.M., Gjelberg, J., Kristensen, S.E., Nilsen, K., 2002. Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Mar. Pet. Geol. 19, 13-37.
    • Bungum, H., Alsaker, A., Kvamme, L.B., Hansen, R.A., 1991. Seismicity and seismotectonics of Norway and nearby continental shelf areas. J. Geophys. Res. http://dx.doi.org/10. 1029/90JB02010.
    • Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology 24, 1025-1028. http://dx.doi.org/10.1130/0091-7613(1996)024b1025.
    • Carruthers, D., Cartwright, J., Jackson, M.P.A., Schutjens, P., 2013. Origin and timing of layer-bound radial faulting around North Sea salt stocks: new insights into the evolving stress state around rising diapirs. Mar. Pet. Geol. 48, 130-148. http://dx.doi.org/ 10.1016/j.marpetgeo.2013.08.001.
    • Carter, N.L., Hansen, F.D., Senseny, P.E., 1982. Stress magnitudes in natural rock salt. J. Geophys. Res. Solid Earth 87, 9289-9300.
    • Cartwright, J.A., 1996. Polygonal Fault Systems: A New Type of Fault Structure Revealed by 3-D Seismic Data From the North Sea Basin.
    • Cartwright, J., Bouroullec, R., James, D., Johnson, H., 1998. Polycyclic motion history of some Gulf Coast growth faults from high-resolution displacement analysis. Geology 26, 819-822. http://dx.doi.org/10.1130/0091-7613(1998)026b0819:PMHOSGN2.3. CO;2.
    • Cartwright, J.A., Mansfield, C.S., 1998. Lateral displacement variation and lateral tip geometry of normal faults in the Canyonlands National Park, Utah. J. Struct. Geol. http://dx. doi.org/10.1016/S0191-8141(97)00079-5.
    • Chadwick, W.W., Dieterich, J.H., 1995. Mechanical modeling of circumferential and radial dike intrusion on Galapagos volcanoes. J. Volcanol. Geotherm. Res. 66, 37-52.
    • Chand, S., Mienert, J., Andreassen, K., Knies, J., Plassen, L., Fotland, B., 2008. Gas hydrate stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea suggests an active hydrocarbon venting system. Mar. Pet. Geol. 25, 625-636. http:// dx.doi.org/10.1016/j.marpetgeo.2007.10.006.
    • Chand, S., Thorsnes, T., Rise, L., Brunstad, H., Stoddart, D., Bøe, R., Lågstad, P., Svolsbru, T., 2012. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation. Earth Planet. Sci. Lett. 331, 305-314.
    • Chapman, T.J., Williams, G.D., 1984. Displacement-distance methods in the analysis of fold-thrust structures and linked-fault systems. J. Geol. Soc. Lond. 141, 121-128.
    • Childs, C., Watterson, J., Walsh, J.J., 1995. Fault overlap zones within developing normal fault systems. J. Geol. Soc. Lond. http://dx.doi.org/10.1144/gsjgs.152.3.0535.
    • Childs, C., Walsh, J.J., Watterson, J., 1997. Complexity in fault zone structure and implications for fault seal prediction. Nor. Pet. Soc. Spec. Publ. 7, 61-72. http://dx.doi.org/10. 1016/S0928-8937(97)80007-0.
    • Clark, J.A., Cartwright, J.A., Stewart, S.A., 1999. Mesozoic dissolution tectonics on the west central shelf, UK central North Sea. Mar. Pet. Geol. 16, 283-300.
    • Cocks, L.R.M., Torsvik, T.H., 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Sci. Rev. 72, 39-66.
    • Cosgrove, J.W., Ameen, M.S., 1999. A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds. Geol. Soc. Lond. Spec. Publ. 169, 7-21.
    • Dalland, A., Worsley, D., Ofstad, K., 1988. A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Norw. Petrol. Direct. Bull. 4, 87 No..
    • Dawers, N.H., Anders, M.H., 1995. Displacement-length scaling and fault linkage. J. Struct. Geol. 17. http://dx.doi.org/10.1016/0191-8141(94)00091-D.
    • Dengo, C.A., Røssland, K.G., 2013. Extensional tectonic history of the western Barents Sea. Struct. Tecton. Model. its Appl. to Pet. Geol. Nor. Pet. Soc. Spec. Publ. 1, 91-107.
    • Doré, A., 1991. The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 87, 441-492.
    • Doré, A., 1995. Barents Sea geology, petroleum resources and commercial potential. Arctic 48, 207-221.
    • Ehrenberg, S.N., Nielsen, E., Svånå, T.A., Stemmerik, L., 1998. Depositional evolution of the Finnmark carbonate platform, Barents Sea: results from wells 7128/6-1 and 7128/4- 1. Nor. Geol. Tidsskr. 78, 185-224.
    • Elvebakk, G., Hunt, D.W., Stemmerik, L., 2002. From isolated buildups to buildup mosaics: 3D seismic sheds new light on Upper Carboniferous-Permian fault controlled carbonate buildups, Norwegian Barents Sea. Sediment. Geol. 152, 7-17.
    • Faleide, J.I., Gudlaugsson, S.T., Jacquart, G., 1984. Evolution of the western Barents Sea. Mar. Pet. Geol. http://dx.doi.org/10.1016/0264-8172(84)90082-5.
    • Faleide, J.I., Vågnes, E., Gudlaugsson, S.T., 1993. Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting. Mar. Pet. Geol. 10, 186-214. http://dx.doi.org/10.1016/0264-8172(93)90104-Z.
    • Faleide, J.I., Solheim, A., Fiedler, A., Hjelstuen, B.O., Andersen, E.S., Vanneste, K., 1996. Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin. Glob. Planet. Chang. http://dx.doi.org/10.1016/0921-8181(95)00012-7.
    • Faleide, J.I., Tsikalas, F., Breivik, A.J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., Eldholm, O., 2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31, 82-91. http://dx.doi.org/10.1016/j.strusafe.2006.11.005.
    • Fejerskov, M., Lindholm, C., Myrvang, A., Bungum, H., 2000. Crustal stress in and around Norway: a compliation of in situ stress observations. Geol. Soc. Lond. Spec. Publ. 167, 441-449. http://dx.doi.org/10.1144/GSL.SP.2000.167.01.18.
    • Gabrielsen, R., 1984. Long-lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. J. Geol. Soc. Lond.
    • Gabrielsen, R.H., Faerseth, R.B., Jensen, L.N., Kalheim, J.E., Riis, F., 1990. Structural elements of the Norwegian continental shelf part I: the Barents Sea region. Nor. Pet. Dir. Bull. 6, 45 No..
    • Gamboa, D., Alves, T., Cartwright, J., Terrinha, P., 2010. MTD distribution on a 'passive' continental margin: the Espírito Santo Basin (SE Brazil) during the Palaeogene. Mar. Pet. Geol. 27, 1311-1324. http://dx.doi.org/10.1016/j.marpetgeo.2010.05.008.
    • Ge, H., Jackson, M.P., 1998. Physical modeling of structures formed by salt withdrawal: implications for deformation caused by salt dissolution. Am. Assoc. Pet. Geol. Bull. 82, 228-250.
    • Gee, D., Fossen, H., Henriksen, N., Higgins, A., 2008. From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31, 44-51.
    • Gernigon, L., Brönner, M., 2012. Late Palaeozoic architecture and evolution of the southwestern Barents Sea: insights from a new generation of aeromagnetic data. J. Geol. Soc. Lond. 169, 449-459.
    • Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., Yamasaki, T., 2014. Crustal and basin evolution of the southwestern Barents Sea: from Caledonian orogeny to continental breakup. Tectonics 33, 347-373. http://dx.doi.org/10.1002/2013TC003439.
    • Glørstad-Clark, E., Faleide, J.I., Lundschien, B.A., Nystuen, J.P., 2010. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Mar. Pet. Geol. 27, 1448-1475. http://dx.doi.org/10.1016/j.marpetgeo.2010.02.008.
    • Gölke, M., Brudy, M., 1996. Orientation of crustal stresses in the North Sea and Barents Sea inferred from borehole breakouts. Tectonophysics 266, 25-32. http://dx.doi.org/10. 1016/S0040-1951(96)00181-3.
    • Gölke, M., Coblentz, D., 1996. Origins of the European regional stress field. Tectonophysics 266, 11-24. http://dx.doi.org/10.1016/S0040-1951(96)00180-1.
    • Gudlaugsson, S.T., Faleide, J.I., Johansen, S.E., Breivik, A.J., 1998. Late Palaeozoic structural development of the south-western Barents Sea. Mar. Pet. Geol. http://dx.doi.org/10. 1016/S0264-8172(97)00048-2.
    • Gutiérrez, F., 2004. Origin of the salt valleys in the Canyonlands section of the Colorado plateau: evaporite-dissolution collapse versus tectonic subsidence. Geomorphology 57, 423-435.
    • Hansen, J.P.V., Cartwright, J.A., Huuse, M., Clausen, O.R., 2005. 3D seismic expression of fluid migration and mud remobilization on the Gjallar ridge, offshore mid-Norway. Basin Res. 17, 123-139.
    • Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., 2008. The World Stress Map Database Release. p. 2008 http://dx.doi.org/10.1594/GFZ.WSM.Rel2008.
    • Henriksen, E., Bjornseth, H.M., Hals, T.K., Heide, T., Kiryukhina, T., Klovjan, O.S., Larssen, G.B., Ryseth, A.E., Ronning, K., Sollid, K., Stoupakova, A., 2011a. Uplift and Erosion of the Greater Barents Sea: Impact on Prospectivity and Petroleum Systems. Geol. Soc, London, Mem http://dx.doi.org/10.1144/M35.17.
    • Henriksen, E., Ryseth, A.E., Larssen, G.B., Heide, T., Ronning, K., Sollid, K., Stoupakova, A.V., 2011b. Tectonostratigraphy of the Greater Barents Sea: Implications for Petroleum Systems. Geol. Soc, London, Mem http://dx.doi.org/10.1144/M35.10.
    • Holohan, E.P., De Vries, B.V.W., Troll, V.R., 2008. Analogue models of caldera collapse in strike-slip tectonic regimes. Bull. Volcanol. 70, 773-796.
    • Hudec, M.R., Jackson, M.P.A., 2007. Terra infirma: understanding salt tectonics. Earth-Sci. Rev. 82, 1-28. http://dx.doi.org/10.1016/j.earscirev.2007.01.001.
    • Jensen, L.N., Sørensen, K., 1992. Tectonic framework and halokinesis of the Nordkapp Basin, Barents Sea. Struct. Tecton. Model. its Appl. to Pet. Geol. Nor. Pet. Soc. Spec. Publ. 1, 109-120.
    • Johansen, S.E., Ostisty, B.K., Birkeland, ø., Fedorovsky, Y.F., Martirosjan, V.N., Christensen, O.B., Cheredeev, S.I., Ignatenko, E.A., Margulis, L.S., 1993. Hydrocarbon potential in the Barents Sea region: play distribution and potential. Norwegian Petroleum Society Special Publications, pp. 273-320 http://dx.doi.org/10.1016/B978-0-444-88943-0. 50024-1.
    • Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., 2010. Reservoir compartmentalization: an introduction. Geol. Soc. Lond. Spec. Publ. 347, 1-8. http://dx.doi.org/10.1144/SP347.1.
    • Klausen, T.G., Mørk, A., 2014. The Upper Triassic paralic deposits of the De Geerdalen formation on Hopen: outcrop analog to the subsurface Snadd formation in the Barents Sea. Am. Assoc. Pet. Geol. Bull. 98, 1911-1941.
    • Klausen, T.G., Ryseth, A.E., Helland-Hansen, W., Gawthorpe, R., Laursen, I., 2015. Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Mar. Pet. Geol. 62, 102-122.
    • Klein, R.J., Barr, M.V., 1986. Regional state of stress in western Europe. In: Stephenson, O. (Ed.), Rock Stress and Rock Stress Measurement. Centrek Publ, Stockholm, pp. 33-44.
    • Knipe, R.J., 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. Am. Assoc. Pet. Geol. Bull. 81, 187-195. http://dx.doi.org/10.1306/ 522B42DF-1727-11D7-8645000102C1865D.
    • Knipe, R.J., Jones, G., Fisher, Q.J., 1998. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction. Geol. Soc. Lond. Spec. Publ. http://dx.doi.org/10.1144/ GSL.SP.1998.147.01.01.
    • Koyi, H., Talbot, C.J., Tørudbakken, B.O., 1993. Salt diapirs of the southwest Nordkapp Basin: analogue modelling. Tectonophysics 228, 167-187.
    • Larssen, G.B., Elvebakk, G., Henriksen, L.B., Nilsson, I., Samuelsberg, T.J., Stemmerik, L., Worsley, D., Kristensen, S.E., Svånå, T.A., 2002. Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. Norw. Petrol. Direct. Bull. 9, 76.
    • Leveille, G.P., Knipe, R., More, C., Ellis, D., Dudley, G., Jones, G., Fisher, Q.J., Allinson, G., 1997. Compartmentalization of Rotliegendes gas reservoirs by sealing faults, Jupiter fields area, southern North Sea. Geol. Soc. London, Spec. Publ. 123, 87-104. http:// dx.doi.org/10.1144/GSL.SP.1997.123.01.06.
    • Lindholm, C.D., Bungum, J., Bratli, R.K., Aadnøy, B.S., Dahl, N., Tørudbakken, B., Atakan, K., 1995. Crustal stress in the northern North Sea as inferred from borehole breakouts and earthquake focal mechanisms. Terra Nova 7, 51-59. http://dx.doi.org/10.1111/j. 1365-3121.1995.tb00667.x.
    • Lindholm, C.D., Bungum, H., Hicks, E., Villagran, M., 2000. Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. Geol. Soc. London, Spec. Publ. 167, 429-439. http://dx.doi.org/10.1144/GSL.SP.2000.167.01.17.
    • Lonergan, L., Cartwright, J., Jolly, R., 1998. The geometry of polygonal fault systems in tertiary mudrocks of the North Sea. J. Struct. Geol. 20, 529-548. http://dx.doi.org/10. 1016/S0191-8141(97)00113-2.
    • Mansfield, C.S., Cartwright, J.A., 1996. High resolution fault displacement mapping from three-dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol. 18, 249-263. http://dx.doi.org/10.1016/S0191- 8141(96)80048-4.
    • McDonnell, A., Loucks, R.G., Dooley, T., 2007. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pullapart fault systems, or hydrothermal alteration? Am. Assoc. Pet. Geol. Bull. 91, 1295-1318.
    • McFarland, J.M., Morris, A.P., Ferrill, D.A., 2012. Stress inversion using slip tendency. Comput. Geosci. 41, 40-46.
    • Valley, M., 2014. Midland Valley Move Application.
    • Mørk, A., Elvebakk, G., 1999. Lithological description of subcropping lower and middle Triassic Rocks from the Svalis Dome, Barents Sea. Polar Res. 18, 83-104. http://dx. doi.org/10.1111/j.1751-8369.1999.tb00278.x.
    • Morris, A., Ferrill, D.A., Henderson, D.B., 1996. Slip-tendency analysis and fault reactivation. Geology 24, 275-278. http://dx.doi.org/10.1130/0091-7613(1996)024b0275.
    • Müller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., Ljunggren, C., 1992. Regional patterns of tectonic stress in Europe. J. Geophys. Res. http://dx.doi.org/10.1029/91JB01096.
    • Muraoka, H., Kamata, H., 1983. Displacement distribution along minor fault traces. J. Struct. Geol. 5, 483-495. http://dx.doi.org/10.1016/0191-8141(83)90054-8.
    • Neurauter, T.W., Roberts, H.H., 1994. Three generations of mud volcanoes on the Louisiana continental slope. Geo-Mar. Lett. 14, 120-125.
    • Nicol, A., Watterson, J., Walsh, J.J., Childs, C., 1996. The shapes, major axis orientations and displacement patterns of fault surfaces. J. Struct. Geol. http://dx.doi.org/10.1016/ S0191-8141(96)80047-2.
    • Nicol, A., Gillespie, P.A., Childs, C., Walsh, J.J., 2002. Relay zones between mesoscopic thrust faults in layered sedimentary sequences. J. Struct. Geol. 24, 709-727.
    • Nilsen, K.T., Henriksen, E., Larsen, G.B., 1993. Exploration of the Late Palaeozoic carbonates in the southern Barents Sea-a seismic stratigraphic study. Arct. Geol. Pet. Potential, Norw. Pet. Soc. Spec. Publ 2, 393-404.
    • Nilsen, K.T., Vendeville, B.C., Johansen, J.-T., 1995. Influence of Regional Tectonics on Halokinesis in the Nordkapp Basin, Barents Sea.
    • Nøttvedt, A., Cecchi, M., Gjelberg, J.G., Kristensen, S.E., Lønøy, A., Rasmussen, A., Rasmussen, E., Skott, P.H., van Veen, P.M., 1993. Svalbard-Barents sea correlation: a short review. Norwegian Petroleum Society Special Publications, pp. 363-375 http://dx.doi.org/10.1016/B978-0-444-88943-0.50027-7.
    • Ohm, S.E., Karlsen, D.A., Austin, T.J.F., 2008. Geochemically driven exploration models in uplifted areas: examples from the Norwegian Barents Sea. Am. Assoc. Pet. Geol. Bull. 92, 1191-1223.
    • Omosanya, K.O., Alves, T.M., 2014. Mass-transport deposits controlling fault propagation, reactivation and structural decoupling on continental margins (Espírito Santo Basin, SE Brazil). Tectonophysics 628, 158-171. http://dx.doi.org/10.1016/j.tecto.2014.04. 045.
    • Omosanya, K.O., Johansen, S.E., Harishidayat, D., 2015. Evolution and Character of SupraSalt Faults in the Easternmost Hammerfest Basin, SW Barents Sea. Mar. Pet, Geol.
    • Ostanin, I., Anka, Z., Di Primio, R., Bernal, A., 2012. Hydrocarbon Leakage Above the Snøhvit Gas Field, Hammerfest Basin SW Barents Sea. First Break. 30.
    • Peacock, D.C.P., 1991. A comparison between the displacement geometries of veins and normal faults at Kilve, Somerset. Geoscience in South-West England, pp. 363-367.
    • Peacock, D.C.P., Sanderson, D., 1991. Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol. 13, 721-733. http://dx.doi.org/10.1016/0191- 8141(91)90033-F.
    • Perez-Garcia, C., Safronova, P.A., Mienert, J., Berndt, C., Andreassen, K., 2013. Extensional rise and fall of a salt diapir in the Sørvestsnaget Basin, SW Barents Sea. Mar. Pet. Geol. 46, 129-143. http://dx.doi.org/10.1016/j.marpetgeo.2013.05.010.
    • Pollard, D.D., Segall, P., 1987. Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. Fract. Mech. rock 277, 277-349.
    • Rajan, A., Bünz, S., Mienert, J., Smith, A.J., 2013. Gas hydrate systems in petroleum provinces of the SW-Barents Sea. Mar. Pet. Geol. 46, 92-106. http://dx.doi.org/10.1016/j. marpetgeo.2013.06.009.
    • Ranalli, G., Chandler, T.E., 1975. The stress field in the upper crust as determined from in situ measurements. Geol. Rundsch. 64, 653-674. http://dx.doi.org/10.1007/ BF01820688.
    • Ritzmann, O., Faleide, J.I., 2007. Caledonian basement of the western Barents Sea. Tectonics 26. http://dx.doi.org/10.1029/2006TC002059.
    • Roberts, D., 2003. The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics 365, 283-299. http://dx.doi. org/10.1016/S0040-1951(03)00026-X.
    • Ryseth, A., Augustson, J.H., Charnock, M., Haugerud, O., Knutsen, S.M., Midbøe, P.S., Sundsbø, G., 2003. Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Norwegian Journal of Geology/Norsk Geologisk Forening 83 (2).
    • Safronova, P.A., Henriksen, S., Andreassen, K., Laberg, J.S., Vorren, T.O., 2014. Evolution of shelf-margin clinoforms and deep-water fans during the middle Eocene in the Sorvestsnaget Basin, southwest Barents Sea. Am. Assoc. Pet. Geol. Bull. 98, 515-544.
    • Schultz-Ela, D.D., Jackson, M.P. a., Vendeville, B.C., 1993. Mechanics of active salt diapirism. Tectonophysics 228, 275-312. doi:http://dx.doi.org/10.1016/0040- 1951(93)90345-K
    • Seni, S.J., Jackson, M.P.A., 1984. Sedimentary Record of Cretaceous and Tertiary Salt Movement, East Texas Basin: Times, Rates, and Volumes of Salt Flow and Their Implications for Nuclear Waste Isolation and Petroleum Exploration. Bureau of Economic Geology, University of Texas of Austin.
    • Smelror, M., 1994. Jurassic stratigraphy of the Western Barents sea region: a review. Geobios 27, 441-451. http://dx.doi.org/10.1016/S0016-6995(94)80165-7.
    • Smelror, M., Petrov, O.V., Larssen, G.B., Werner, S.C., 2009. Geological history of the Barents Sea. Nor. Geol. Unders. 1-135.
    • Smith, L., Forster, C.B., Evans, J.P., 1990. Interaction between Fault Zones, Fluid Flow and Heat Transfer at the Basin Scale.
    • Soper, N.J., Strachan, R.A., Holdsworth, R.E., Gayer, R.A., Greiling, R.O., 1992. Sinistral transpression and the Silurian closure of Iapetus. J. Geol. Soc. Lond. 149, 871-880.
    • Stemmerik, L., 2000. Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 95-126.
    • Stephansson, O., 1993. Rock stress in the Fennoscandian shield. Comprehensive Rock Engineering, first ed. Pergamon Press, Oxford.
    • Stewart, S.A., 2006. Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults. Mar. Pet. Geol. 23, 843-853. http://dx.doi.org/10. 1016/j.marpetgeo.2006.04.001.
    • Stoupakova, A.V., Henriksen, E., Burlin, Y.K., Larsen, G.B., Milne, J.K., Kiryukhina, T.A., Golynchik, P.O., Bordunov, S.I., Ogarkova, M.P., Suslova, A.A., 2011. The Geological Evolution and Hydrocarbon Potential of the Barents and Kara Shelves. Geol. Soc, London, Mem http://dx.doi.org/10.1144/M35.21.
    • Talbot, C., Rönnlund, P., Schmeling, H., 1991. Diapiric spoke patterns. Tectonophysics 188, 187-201.
    • Torsvik, T., Smethurst, M., Meert, J., Vandervoo, R., Mckerrow, W., Brasier, M., Sturt, B., Walderhaug, H., 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic - a tale of Baltica and Laurentia. Earth-Sci. Rev. 40, 229-258. http:// dx.doi.org/10.1016/0012-8252(96)00008-6.
    • Vadakkepuliyambatta, S., Bünz, S., Mienert, J., Chand, S., 2013. Distribution of subsurface fluid-flow systems in the SW Barents Sea. Mar. Pet. Geol. 43, 208-221.
    • Vendeville, B.C., Jackson, M.P.A., 1992. The rise of diapirs during thin-skinned extension. Mar. Pet. Geol. 9, 331-354. http://dx.doi.org/10.1016/0264-8172(92)90047-I.
    • Vendeville, B.C., 2002. A New Interpretation of Trusheim's Classic Model of Salt-Diapir Growth.
    • Vorren, T.O., Richardsen, G., Knutsen, S.-M., Henriksen, E., 1991. Cenozoic erosion and sedimentation in the western Barents Sea. Mar. Pet. Geol. http://dx.doi.org/10.1016/ 0264-8172(91)90086-G.
    • Walsh, J.J., Watterson, J., 1987. Distributions of cumulative displacement and seismic slip on a single normal fault surface. J. Struct. Geol. 9, 1039-1046.
    • Walsh, J.J., Watterson, J., Heath, A.E., Childs, C., 1998. Representation and scaling of faults in fluid flow models. Pet. Geosci. http://dx.doi.org/10.1144/petgeo.4.3.241.
    • Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A., Bonson, C.G., 2003. Formation of segmented normal faults: a 3-D perspective. J. Struct. Geol. 25, 1251-1262.
    • Walter, T.R., Troll, V.R., 2001. Formation of caldera periphery faults: an experimental study. Bull. Volcanol. 63, 191-203.
    • Withjack, M., Scheiner, C., 1982. Fault patterns associated with domes - an experimental and analytical study. Am. Assoc. Pet. Geol. Bull. 66, 302-316.
    • Worsley, D., 2008. The post-Caledonian development of Svalbard and the western Barents Sea. Polar Res. 298-317 http://dx.doi.org/10.1111/j.1751-8369.2008.00085.x.
    • Yeats, R.S., 1986. Faults related to folding with examples from New Zealand. R. Soc. New Zeal. Bull. 24, 273-292.
    • Yin, A., 2004. Gneiss domes and gneiss dome systems. Geol. Soc. Am. Spec. Pap. 380, 1-14.
    • Yin, H., Groshong, R.H., 2007. A three-dimensional kinematic model for the deformation above an active diapir. Am. Assoc. Pet. Geol. Bull. 91, 343-363. http://dx.doi.org/10. 1306/10240606034.
    • Zoback, M.D., 2010. Reservoir Geomechanics. Cambridge University Press.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
  • No similar publications.

Share - Bookmark

Cite this article