LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I. (2016)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: Condensed Matter - Statistical Mechanics, Physics - Atomic Physics
Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] L. C. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978).
    • [2] S. Ciliberto, in Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter (Springer, Berlin, 2003), Vol. 77, p. 555.
    • [3] K. Binder and W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific, Singapore, 2005).
    • [4] P. S. F. Ritort, Adv. Phys. 52, 219 (2003).
    • [5] L. Peliti, Statistical Mechanics in a Nutshell (Princeton University Press, Princeton, NJ, 2011).
    • [6] G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301 (2013).
    • [7] L. Berthier and M. D. Ediger, Phys. Today 69, 40 (2016).
    • [8] J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704 (2002).
    • [9] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007).
    • [10] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland, J. Phys. A: Math. Theor. 42, 075007 (2009).
    • [11] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
    • [12] W. Kob and H. C. Andersen, Phys. Rev. E 48, 4364 (1993).
    • [13] V. Teboul, J. Chem. Phys. 141, 194501 (2014).
    • [14] J. Ja¨ckle and S. Eisinger, Z. Phys. B 84, 115 (1991).
    • [15] G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53, 1244 (1984).
    • [16] A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer, and D. Chandler, Phys. Rev. X 1, 021013 (2011).
    • [17] I. Lesanovsky and J. P. Garrahan, Phys. Rev. Lett. 111, 215305 (2013).
    • [18] D. Poletti, P. Barmettler, A. Georges, and C. Kollath, Phys. Rev. Lett. 111, 195301 (2013).
    • [19] M. Mattioli, A. W. Gla¨tzle, and W. Lechner, New J. Phys. 17, 113039 (2015).
    • [20] M. Marcuzzi, E. Levi, W. Li, J. P. Garrahan, B. Olmos, and I. Lesanovsky, New J. Phys. 17, 072003 (2015).
    • [21] B. Everest, M. Marcuzzi, and I. Lesanovsky, Phys. Rev. A 93, 023409 (2016).
    • [22] M. M. Valado, C. Simonelli, M. D. Hoogerland, I. Lesanovsky, J. P. Garrahan, E. Arimondo, D. Ciampini, and O. Morsch, Phys. Rev. A 93, 040701(R) (2016).
    • [23] A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. P. Shaffer, T. Pfau, and R. Lo¨w, Phys. Rev. Lett. 114, 203002 (2015).
    • [24] A. Das, B. K. Chakrabarti, and R. B. Stinchcombe, Phys. Rev. E 72, 026701 (2005).
    • [25] A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).
    • [26] A. Karabanov, D. Wis´niewski, I. Lesanovsky, and W. Ko¨ckenberger, Phys. Rev. Lett. 115, 020404 (2015).
    • [27] J. M. Hickey, S. Genway, and J. P. Garrahan, J. Stat. Mech. Theory Exp. (2016) 054047.
    • [28] M. van Horssen, E. Levi, and J. P. Garrahan, Phys. Rev. B 92, 100305 (2015).
    • [29] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
    • [30] R. Lo¨w, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Bu¨chler, and T. Pfau, J. Phys. B 45, 113001 (2012).
    • [31] H. Labuhn, D. Barredo, S. Ravets, S. de Le´se´leuc, T. Macr`ı, T. Lahaye, and A. Browaeys, Nature (London) 534, 667 (2016).
    • [32] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
    • [33] J. J. Garc´ıa-Ripoll, S. Du¨rr, N. Syassen, D. M. Bauer, M. Lettner, G. Rempe, and J. I. Cirac, New J. Phys. 11, 013053 (2009).
    • [34] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
    • [35] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002), p. 625.
    • [36] S. Sarkar, S. Langer, J. Schachenmayer, and A. J. Daley, Phys. Rev. A 90, 023618 (2014).
    • [37] H. Schempp, G. Gu¨nter, M. Robert-de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik, D. W. Scho¨nleber, M. Ga¨rttner, J. Evers, S. Whitlock, and M. Weidemu¨ller, Phys. Rev. Lett. 112, 013002 (2014).
    • [38] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevE.94.052108 for the expressions of the tunneling and dephasing rates and for a brief derivation of the master equation.
    • [39] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
    • [40] M. Marcuzzi, J. Schick, B. Olmos, and I. Lesanovsky, J. Phys. A: Math. Theor. 47, 482001 (2014).
    • [41] P. Degenfeld-Schonburg and M. J. Hartmann, Phys. Rev. B 89, 245108 (2014).
    • [42] J.-S. Bernier, D. Poletti, and C. Kollath, Phys. Rev. B 90, 205125 (2014).
    • [43] B. Sciolla, D. Poletti, and C. Kollath, Phys. Rev. Lett. 114, 170401 (2015).
    • [44] Y. S. Elmatad, R. L. Jack, D. Chandler, and J. P. Garrahan, Proc. Natl. Acad. Sci. U.S.A. 107, 12793 (2010).
    • [45] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lu¨hmann, B. A. Malomed, T. Sowiski, and J. Zakrzewski, Rep. Prog. Phys. 78, 066001 (2015).
    • [46] R. A. L. Jones, Soft Condensed Matter (Oxford University Press, New York, 2011).
    • [47] M. Hoening, W. Abdussalam, M. Fleischhauer, and T. Pohl, Phys. Rev. A 90, 021603 (2014).
    • [48] D. W. Scho¨nleber, M. Ga¨rttner, and J. Evers, Phys. Rev. A 89, 033421 (2014).
    • [49] W. S. Bakr, J. I. Gillen, A. Peng, S. Fo¨lling, and M. Greiner, Nature (London) 462, 74 (2009).
    • [50] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fo¨lling, L. Pollet, and M. Greiner, Science 329, 547 (2010).
    • [51] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nat. Phys. 467, 68 (2010).
    • [52] T. E. Markland, J. A. Morrone, B. J. Berne, K. Miyazaki, E. Rabani, and D. R. Reichman, Nat. Phys. 7, 134 (2011).
    • [53] B. Olmos, I. Lesanovsky, and J. P. Garrahan, Phys. Rev. Lett. 109, 020403 (2012).
    • [54] M. Marcuzzi, M. Buchhold, S. Diehl, and I. Lesanovsky, Phys. Rev. Lett. 116, 245701 (2016).
    • [55] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lu¨schen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science 349, 842 (2015).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    43
    43%
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Rydberg soft matter
  • EC | RYSQ
  • EC | ESCQUMA
  • EC | HAIRS

Related to

  • fet-fp7FET Open: FET-Open Xtrack
  • fet-fp7FET Open: Hybrid Architecture for quantum Information using Rydberg ensembles and Superconductors

Related to

  • fet-h2020FET PROACT: Quantum simulation
  • fet-h2020FET PROACT: Rydberg Quantum Simulators

Cite this article