LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Casian, A.I.; Sanduleac, I.I. (2014)
Publisher: Springer US
Languages: English
Types: Article
Subjects:
A more complete physical model for nanostructured crystals of tetrathiotetracene-iodide that takes into account the interaction of carriers with the neighboring one-dimensional (1D) conductive chains and also the scattering on impurities and defects is presented. For simplicity, the 2D approximation is applied. It is shown that this model describes very well the temperature dependencies of electrical conductivity in the temperature interval between 180 and 300 K, and of the Seebeck coefficient between 50 and 300 K, the highest temperature for which the measurements were reported. For lower temperatures, it is necessary to also consider the fluctuations of dielectric phase that appear before the metal–dielectric transition. It is found that the predictions made in the 1D approximation are valid only if the crystal purity is not very high, and the electrical conductivity is limited up to ∼3.5×106Ω−1m−1 and the thermoelectric figure of merit up to ZT∼4.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. O. Bubnova, et al., Nature Materials, 10, 429, 2011.
    • 2. R. Yue, Synt. Met. 162, 912 (2012).
    • 3. H. L. Kwok, JEM, 41, 476 (2012).
    • 4. G-H. Kim, L. Shao, K. Zhang and K. P. Pipe, Nat. Matter. 12, 719 (2013).
    • 5. Y. Sun , P. Sheng , Dr. C. Di , F. Jiao , Dr. W. Xu , Prof. D. Zhu. Adv. Mater., 2012. DOI: 10.1002/adma.201104305.
    • 6. T. O. Poehler and H. E. Katz. Energy Environ. Sci. 5, 8110 (2012), DOI: 10.1039/C2EE22124A
    • 7. K. Hayashi, Shinano T., Miyazaki Y., and Kajitani T. J. Appl. Phys. 109, 023712 (2011).
    • 8. Y. Y. Wang, K. F. Cai, J. L. Yin, B. J. An, Y. Du, X. Yao. J Nanopart Res (2011) 13:533-539. DOI 10.1007/s11051-010-0043-y.
    • 9. W. Q. Ao, L. Wang, J. Q. Li, Fred Pan, C. N. Wu. JEM, 40, 2027 (2011).
    • 10. Jihui Yang, Hin-Lap Yip, Alex K.-Y. Jen. Advanced Energy Materials, 3, 549 (2013).
    • 11. Shane P. Ashby, Jorge García-Cañadas, Gao Min & Yimin Chao, JEM, 42, 1495 (2013).
    • 12. G. Kim, K. P. Pipe. Phys. Rev. B, 86, 085208 (2012).
    • 13. J. Chen, D. Wang, Z. Shuai, J. Chem. Theory Comput., 8 (9), 3338 (2012) DOI: 10.1021/ct3004436.
    • 14. Zheyong Fan, Hui-Qiong Wang, and Jin-Cheng Zheng. J. Appl. Phys., 109, 073713 (2011).
    • 15. D. Wang, L. Tang, M. Long, and Z. Shuai. J. Phys. Chem. C, 115 (13), 5940, (2011). DOI: 10.1021/jp108739c.
    • 16. Y. Wang, J. Zhou, and R. Yang. J. Phys. Chem. C, 115, 24418 (2011).
    • 17. A. Casian, in: Thermoelectric Handbook, Macro to Nano, Ed. by D. M. Rowe, CRC Press, 2006, Chap.36.
    • 18. A. Casian, J. G. Stockholm, V. Dusciac and V. Nicic, J. Nanoelectron. Optoelectron. 4, 95 (2009).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article