LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hetherington, TJ; Woodall, DR (2006)
Publisher: International Press
Languages: English
Types: Article
Subjects:
It is proved that, if G is a K4-minor-free graph with maximum degree ∆ ≥ 4, then G is totally (∆ + 1)-choosable; that is, if every element (vertex or edge) of G is assigned a list of ∆ + 1 colours, then every element can be coloured with a colour from its own list in such a way that every two adjacent or incident elements are coloured with different colours. Together with other known results, this shows that the List-Total-Colouring Conjecture, that ch’’(G) = χ’(G) for every graph G, is true for all K4-minor-free graphs. The List-Edge-Colouring Conjecture is also known to be true for these graphs. As a fairly straightforward consequence, it is proved that both conjectures hold also for all K2,3-minor free graphs and all ( K2 + (K1 U K2))-minor-free graphs.

Share - Bookmark

Cite this article