LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Njobuenwu, DO; Fairweather, M; Yao, J (2013)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
A dilute, particle-laden flow in a square duct with a 90° bend is modelled using a RANS approach, coupled to a second-moment turbulence closure, together with a Lagrangian particle tracking technique, with particle dispersion modelled using a stochastic approach that ensures turbulence anisotropy. Detailed predictions of mean and fluctuating fluid and particle velocities are validated through comparisons of predictions with experimental measurements made for gas-solid flows in a vertical-to-horizontal flow configuration. Reasonable agreement between predicted first and second moments and data is found for both phases, with the consistent application of anisotropic and three-dimensional modelling approaches resulting in predictions that compare favourably with those of other authors, and which provide fluctuating particle velocities in acceptable agreement with data.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adams, J.F.W., Fairweather, M., Yao, J., 2011. Modelling and simulation of particle re-suspension in a turbulent square duct flow. Compt. Chem. Eng. 35, 893-900.
    • Armenio, V., Fiorotto, V., 2001. The importance of the forces acting on particles in turbulent flows.
    • Phys. Fluids 13, 2437-2440.
    • Berlemont, A., Desjonqueres, P., Gouesbet, G., 1990. Particle Lagrangian simulation in turbulent flows. Int. J. Multiphase Flow 16, 19-34.
    • Brenn, G., Braeske, H., Zivkovic, G., Durst, F., 2003. Experimental and numerical investigation of liquid channel flows with dispersed gas and solid particles. Int. J. Multiphas. Flow 29, 219-247.
    • Burry, D., Bergeles, G., 1993. Dispersion of particles in anisotropic turbulent flows. Int. J.
    • Multiphase Flow 19, 651-664.
    • Chen, X., 1997. Efficient particle tracking algorithm for two-phase flows in geometries using curvilinear coordinates. Numer. Heat Tr. A-Appl. 32, 387-405.
    • Chen, X.Q., 2001. Multigrid acceleration of computations of turbulent particle-laden flows. Numer.
    • Heat Tr. B-Fund. 40, 139-162.
    • Crowe, C.T., Sommerfeld, M., Tsuji, Y., 1998. Multiphase flows with droplets and particles, CRC Press, Boca Raton, Florida.
    • Crowe, C.T., Troutt, T.R., Chung, J.N., 1996. Numerical models for two-phase turbulent flows.
    • Annu. Rev. Fluid Mech. 28, 11-43.
    • Dianat, M., Fairweather, M., Jones, W.P., 1996. Reynolds stress closure applied to axisymmetric, impinging turbulent jets. Theor. Comp. Fluid Dyn. 8, 435-447.
    • Fan, J.R., Yao, J., Cen, K.F., 2002. Antierosion in a 90 degrees bend by particle impaction. AIChE J. 48, 1401-1412.
    • Fan, J.R., Zhang, X.Y., Chen, L.H., Cen, K.F., 1997a. New stochastic particle dispersion modeling of a turbulent particle-laden round jet. Chem. Eng. J. 66, 207-215.
    • Fan, J.R., Zhang, X.Y., Cheng, L.H., Cen, K.F., 1997b. Numerical simulation and experimental study of two-phase -292.
    • Gosman, A.D., Ioannides, E., 1981. Aspects of computer simulation of liquid-fuelled combustors.
    • American Institute of Aeronautics and Astronautics, 19th Aerospace Sciences Meeting, St Louis, MO, USA, AIAA Paper 81-0323.
    • Gouesbet, G., Berlemont, A., 1999. Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog. Energ. Combust. Sci. 25, 133-159.
    • Grant, G., Tabakoff, W., 1975. Erosion prediction in turbomachinery resulting from environmental solid particles. J. Aircraft 12, 471-478.
    • Grigoriadis, D.G.E., Kassinos, S.C., 2009. Lagrangian particle dispersion in turbulent flow over a wall mounted obstacle. Int. J. Heat Fluid Flow 30, 462-470.
    • Ibrahim, K.A., El-Kadi, M.A., Hamed, M.H., El-Behery, S.M., 2006. Gas-solid two-phase flow in 90° bend. Alexandria Eng. J. 45, 417-433.
    • Jones, W.P., Musonge, P., 1988. Closure of the Reynolds stress and scalar flux equations. Phys.
    • Fluids 31, 3589-3604.
    • Kliafas, Y., Holt, M., 1987. LDV measurements of a turbulent air-solid two-phase flow in a 90° bend. Exp. Fluids 5, 73-85.
    • Kuan, B., William, Y., Solnordal, C., 2003. CFD simulation and experimental validation of dilute particulate turbulent flow in 90° duct bend. Proc. 3rd International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 531-536.
    • Kuan, B., Yang, W., Schwarz, M.P., 2007. Dilute gas-solid two-phase flows in a curved 90o duct bend: CFD simulation with experimental validation. Chem. Eng. Sci. 62, 2068-2088.
    • Launder, B.E., Spalding, D.B., 1974. Numerical computation of turbulent flows. Comput. Method.
    • Appl. M. 3, 269-289.
    • Laurence, J.C., 1956. Intensity, scale, and spectra of turbulence in mixing region of free subsonic jet. NACA Report No. 1292.
    • Mohanarangam, K., Tian, Z.F., Tu, J.Y., 2007. Numerical computation of turbulent gas-particle flow in a 90 degree bend: Comparison of two particle modelling approaches. ANZIAM J 48, C741-C758.
    • Mohanarangam, K., Tian, Z.F., Tu, J.Y., 2008. Numerical simulation of turbulent gas-particle flow in a 90 degree bend: Eulerian-Eulerian approach. Comput. Chem. Eng. 32, 561-571.
    • Naik, S., Bryden, I.G., 1999. Prediction of turbulent gas-solids flow in curved ducts using the Eulerian-Lagrangian method. Int. J. Numer. Meth. Fl. 31, 579-600.
    • Nielson, G., Hagen, H., Muller, H., 1997. Scientific visualization: overviews, methodologies, and techniques. IEEE Computer Society, Los Alamitos, California.
    • Niu, Y.Y., 2001. Evaluation of erosion in a two-way coupled fluid-particle system. Int. J. Numer.
    • Meth. Fl. 36, 711-742.
    • Njobuenwu, D.O., Fairweather, M., Yao, J., 2012. Prediction of turbulent gas-solid flow in a duct with a 90°bend using an Eulerian-Lagrangian approach. AIChE J. 58, 14-30.
    • Njobuenwu, D.O., Fairweather, M., 2012. Modelling of pipe bend erosion by dilute particle suspensions. Compt. Chem. Eng. 42, 235-247.
    • Njobuenwu, D.O., Fairweather, M., Yao, Y., 2009. Prediction of gas-solid flows in a square duct with a 90o bend. In: Hanjali , K., Nagano, Y., Jakirli , S. (Eds.), Proc. Sixth International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., New York, pp. 769-772.
    • Sommerfeld, M., 1992. Modelling of particle-wall collisions in confined gas-particle flows. Int. J.
    • Multiphase Flow 18, 905-926.
    • Sommerfeld, M., 2003. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part 1. Particle transport. Int. J. Multiphas. Flow 29, 675-699.
    • Sommerfeld, M., Huber, N., 1999. Experimental analysis and modelling of particle-wall collisions.
    • Int. J. Multiphas. Flow 25, 1457-1489.
    • Tannehill, J.C., Anderson, D.A., Pletcher, R.H., 1997. Computational fluid mechanics and heat transfer, 2nd edition, Taylor & Francis, Washington DC.
    • Tian, Z.F., Inthavong, K., Tu, J.Y., Yeoh, G.H., 2008. Numerical investigation into the effects of wall roughness on a gas-particle flow in a 90°bend. Int. J. Heat Mass Tran. 51, 1238-1250.
    • Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., Nakatani, M., 1987. Numerical simulation of gas solid two-phase flow in a two-dimensional horizontal channel. Int. J. Multiphas. Flow 13, 671- 684.
    • Tu, J.Y., Fletcher, C.A.J., 1995. Numerical computation of turbulent gas-solid particle flow in a 90- degree bend. AIChE J. 41, 2187-2197.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article