Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Coombes, Martin A.; Viles, Heather A.; Naylor, Larissa A.; La Marca, Emanuela Claudia (2017)
Publisher: Elsevier
Languages: English
Types: Article
Sedentary and mobile organisms grow profusely on hard substrates within the coastal zone and contribute to the deterioration of coastal engineering structures and the geomorphic evolution of rocky shores by both enhancing and retarding weathering and erosion. There is a lack of quantitative evidence for the direction and magnitude of these effects. This study assesses the influence of globally-abundant intertidal organisms, barnacles, by measuring the response of limestone, granite and marine-grade concrete colonised with varying percentage covers of Chthamalus spp. under simulated, temperate intertidal conditions. Temperature regimes at 5 and 10 mm below the surface of each material demonstrated a consistent and statistically significant negative relationship between barnacle abundance and indicators of thermal breakdown. With a 95% cover of barnacles, subsurface peak temperatures were reduced by 1.59 °C for limestone, 5.54 °C for concrete and 5.97 °C for granite in comparison to no barnacle cover. The amplitudes of short-term (15–30 min) thermal fluctuations conducive to breakdown via 'fatigue' effects were also buffered by 0.70 °C in limestone, 1.50 °C in concrete and 1.63 °C in granite. Furthermore, concentrations of potentially damaging salt ions were consistently lower under barnacles in limestone and concrete. These results indicate that barnacles do not enhance, but likely reduce rates of mechanical breakdown on rock and concrete by buffering near-surface thermal cycling and reducing salt ion ingress. In these ways, we highlight the potential role of barnacles as agents of bioprotection. These findings support growing international efforts to enhance the ecological value of hard coastal structures by facilitating their colonisation (where appropriate) through design interventions.

Share - Bookmark

Download from

Cite this article