Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Thomson, R. I.; Jain, P.; Cheetham, A. K.; Carpenter, M. A.
Publisher: American Physical Society
Journal: Physical Review B - Condensed Matter and Materials Physics
Languages: English
Types: Article
Subjects: sub-03
Resonant ultrasound spectroscopy has been used to analyze magnetic and ferroelectric phase transitions in two multiferroic metal-organic frameworks (MOFs) with perovskite-like structures [(CH3)2NH2]M(HCOO)3 (DMA[M]F, M = Co, Mn). Elastic and anelastic anomalies are evident at both the magnetic ordering temperature and above the higher temperature ferroelectric transition. Broadening of peaks above the ferroelectric transition implies the diminishing presence of a dynamic process and is caused by an ordering of the central DMA ([(CH3)2NH2]+) cation which ultimately causes a change in the hydrogen bond conformation and provides the driving mechanism for ferroelectricity. This is unlike traditional mechanisms for ferroelectricity in perovskites which typically involve ionic displacements. A comparison of these mechanisms is made by drawing on examples from the literature. Small elastic stiffening at low temperatures suggests weak magnetoelastic coupling in these materials. This behavior is consistent with other magnetic systems studied, although there is no change in Q−1 associated with magnetic order-disorder, and is the first evidence of magnetoelastic coupling in MOFs. This could help lead to the tailoring of MOFs with a larger coupling leading to magnetoelectric coupling via a common strain mechanism.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 21J. L. C. Rowsell and O. M. Yaghi, Angew. Chem., Int. Ed. 44, 4670 (2005).
    • 22A. K. Cheetham, C. N. R. Rao, and R. K. Feller, Chem. Commun. 2006, 4780 (2006).
    • 23A. K. Cheetham and C. N. R. Rao, Science 318, 58 (2007).
    • 24G. Ferey, Chem. Soc. Rev. 37, 191 (2008).
    • 25T. Yamazaki, Y. Takahashi, and D. Yoshida, J. Colloid Interface Sci. 362, 463 (2011).
    • 26M. Carmen Munoz and J. A. Real, Coord. Chem. Rev. 255, 2068 (2011).
    • 27J. Sculley, D. Yuan, and H. C. Zhou, Energy Environ. Sci. 4, 2721 (2011).
    • 28J. R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H. K. Jeong, P. B. Balbuena, and H. C. Zhou, Coord. Chem. Rev. 255, 1791 (2011).
    • 29K. Okada and H. Sugie, J. Phys. Soc. Jpn. 25, 1128 (1968).
    • 30I. Suzuki and K. Okada, J. Phys. Soc. Jpn. 47, 1023 (1979).
    • 31H. Kobayashi and T. Haseda, J. Phys. Soc. Jpn. 18, 541 (1963).
    • 32P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto, and A. K. Cheetham, J. Am. Chem. Soc. 131, 13625 (2009).
    • 33M. Guo, H. L. Cai, and R. G. Xiong, Inorg. Chem. Commun. 13, 1590 (2010).
    • 34A. Stroppa, P. Jain, P. Barone, M. Marsman, J. Manuel Perez-Mato, A. K. Cheetham, H. W. Kroto, and S. Picozzi, Angew. Chem., Int. Ed. 50, 5847 (2011).
    • 35X. Y. Wang, L. Gan, S. W. Zhang, and S. Gao, Inorg. Chem. 43, 4615 (2004).
    • 36P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto, and A. K. Cheetham, J. Am. Chem. Soc. 130, 10450 (2008).
    • 37M. Sa´nchez-Andu´jar, S. Presedo, S. Ya´n˜ez-Vilar, S. Castro-Garc´ıa, J. Shamir, and M. A. Sen˜ar´ıs-Rodr´ıguez, Inorg. Chem. 49, 1510 (2010).
    • 38J.-C. Tan, P. Jain, and A. K. Cheetham, Dalton Trans. 41, 3949 (2012).
    • 39A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy: Applications to Physics, Material Measurements and Nondestructive Evaluation (Wiley, New York 1997).
    • 40M. Weller, G. Y. Li, J. X. Zhang, T. S. Ke, and J. Diehl, Acta Metall. 29, 1047 (1981).
    • 41R. Schaller, G. Fantozzi, and G. Gremaud, Mechanical Spectroscopy Q−1 with Applications to Materials Science (Trans Tech, Brandain, Switzerland, 2001).
    • 42T. Besara, P. Jain, N. S. Dalal, P. L. Kuhns, A. P. Reyes, H. W. Kroto, and A. K. Cheetham, Proc. Natl. Acad. Sci. USA 108, 6828 (2011).
    • 43H.-W. Meyer, M. A. Carpenter, A. Graeme-Barber, P. Sondergeld, and W. Schranz, Eur. J. Mineral. 12, 1139 (2000).
    • 44P. Sondergeld, W. Schranz, A. V. Kityk, M. A. Carpenter, and E. Libowitzky, Phase Transitions 71, 189 (2000).
    • 45H.-W. Meyer, S. Marion, P. Sondergeld, M. A. Carpenter, K. S. Knight, S. A. T. Redfern, and M. T. Dove, Am. Mineral. 86, 566 (2001).
    • 46M. A. Carpenter, H.-W. Meyer, P. Sondergeld, S. Marion, and K. S. Knight, Am. Mineral. 88, 534 (2003).
    • 47M. A. Carpenter, Am. Mineral. 92, 309 (2007).
    • 48E. K. H. Salje, B. Wruck, and H. Thomas, Z. Phys. B 82, 399 (1991).
    • 49M. Poirier, F. Laliberte´, L. Pinsard-Gaudart, and A. Revcolevschi, Phys. Rev. B 76, 174426 (2007).
    • 50R. I. Thomson, E. S. L. Wright, J. M. Rawson, C. J. Howard, and M. A. Carpenter, Phys. Rev. B 84, 104450 (2011).
    • 51E. K. H. Salje, S. Crossley, S. Kar-Narayan, M. A. Carpenter, and N. D. Mathur, J. Phys.: Condens. Matter 23, 222202 (2011).
    • 52E. K. H. Salje and M. A. Carpenter, J. Phys.: Condens. Matter 23, 112208 (2011).
    • 53G.-C. Xu, W. Zhang, X.-M. Ma, Y.-H. Chen, L. Zhang, H.-L. Cai, Z.-M. Wang, R.-G. Xiong, and S. Gao, J. Am. Chem. Soc. 133, 14948 (2011).
    • 54S. V. Potts, L. J. Barbour, D. A. Haynes, J. M. Rawson, and G. O. Lloyd, J. Am. Chem. Soc. 133, 12948 (2011).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article