LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hermosilla, Unai (2008)
Languages: English
Types: Unknown
Subjects:
Thermal barrier coatings (TBCs) are usually applied on high temperature gas turbine components. They reduce the need for additional cooling of the exposed surfaces and improve the durability of the underlying materials. However, the lack of reliable lifting methods limits their applicability in the design of turbine components and so they are usually employed as additional protection for components that already meet the design requirements. In order to develop failure models and equations of practical interest, the mechanical behaviour and degradation of properties of coatings at elevated temperature needs to be understood. Several phenomena such as the growth of an oxide layer, degradation of bond coats, creep and thermal expansion mismatch between the different layers that compose the TBC contribute in the development of stresses at high temperature. The effect of thermal cycling has been covered in previous research, giving rise to models that explained how accumulated cyclic inelastic strains occurred in the bond coat and oxide layer due to the thermal expansion mismatch. This favoured the wrinkling of the oxide layer and the concentration of stresses, which could eventually cause crack nucleation, growth and failure of the coating. The research contained in this thesis focuses mainly on the development of stress concentrations during high temperature exposure. A coupled micro-structural-mechanical constitutive model was implemented in order to take into account the processes the coatings undergo at high temperature. High tensile stresses, perpendicular to the oxide-top coat interface, which may induce crack nucleation within the oxide layer at high temperature, were obtained.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 225
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article