LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nimalasena, Asanga; Getov, Vladimir
Publisher: IEEE
Languages: English
Types: Part of book or chapter of book
Subjects: UOWSAT
Context-aware systems perform adaptive changes in several ways. One way is for the system developers to encompass all possible context changes in a context-aware application and embed them into the system. However, this may not suit situations where the system encounters unknown contexts. In such cases, system inferences and adaptive learning are used whereby the system executes one action and evaluates the outcome to self-adapts/self-learns based on that. Unfortunately, this iterative approach is time-consuming if high number of actions needs to be evaluated. By contrast, our framework for context-aware systems finds the best action for unknown context through concurrent multi-action evaluation and self-adaptation which reduces significantly the evolution time in comparison to the iterative approach. In our implementation we show how the context-aware multi-action system can be used for a context-aware evaluation for database performance tuning.

Share - Bookmark

Download from

Cite this article