Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bunker, Andrew J.; Stanway, Elizabeth R.; Ellis, Richard S.; McMahon, R. G. (2004)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: QB, QC
We determine the abundance of i′-band dropouts in the recently released HST/ACS Hubble Ultra-Deep Field (UDF). Because the majority of these sources are likely to be z≈ 6 galaxies whose flux decrement between the F775W i′-band and F850LP z′-band arises from Lyman-α absorption, the number of detected candidates provides a valuable upper limit to the unextincted star formation rate at this redshift. We demonstrate that the increased depth of UDF enables us to reach an 8 σ limiting magnitude of z′AB= 28.5 (equivalent to 1.5 h−270 M⊙ yr−1 at z= 6.1, or 0.1 L⋆UV for the z≈ 3U-drop population), permitting us to address earlier ambiguities arising from the unobserved form of the luminosity function. We identify 54 galaxies (and only one star) at z′AB < 28.5 with (i′−z′)AB > 1.3 over the deepest 11-arcmin2 portion of the UDF. The characteristic luminosity (L⋆) is consistent with values observed at z≈ 3. The faint end slope (α) is less well constrained, but is consistent with only modest evolution. The main change appears to be in the number density (Φ*). Specifically, and regardless of possible contamination from cool stars and lower-redshift sources, the UDF data support our previous result that the star formation rate at z≈ 6 was approximately six times less than at z≈ 3. This declining comoving star formation rate [0.005 h70 M⊙ yr−1 Mpc−3 at z≈ 6 at LUV > 0.1 L⋆ for a Salpeter initial mass function (IMF)] poses an interesting challenge for models which suggest that LUV > 0.1 L⋆ star-forming galaxies at z≃ 6 reionized the Universe. The short-fall in ionizing photons might be alleviated by galaxies fainter than our limit, or a radically different IMF. Alternatively, the bulk of reionization might have occurred at z≫ 6.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adelberger K. L., Steidel C. C., 2000, ApJ, 544, 218
    • Barger A. J. et al., 2003, AJ, 126, 632
    • Becker R. H. et al., 2001, AJ, 122, 2850
    • Beckwith S., Somerville R., Stiavelli M., 2003, STScI Newsletter, Vol. 20, Issue 04
    • Bertin E., Arnouts S., 1996, A&AS, 117, 393
    • Blanton M. R. et al., 2003, ApJ, 592, 819
    • Bouwens R. et al., 2003, ApJ, 595, 589
    • Bouwens R., Broadhurst T., Illingworth G., 2003, ApJ, 593, 640
    • Bouwens R. et al., 2004a, ApJ, 606, L25
    • Bouwens R. J., Illingworth G. D., Blakeshee J. P., Broadhurst T., Franx M., 2004b, ApJ, 611, L1
    • Bremer M. N., Lehnert M. D., Waddington I., Hardcastle M. J., Boyce P. J., Phillipps S., 2004, MNRAS, 347, L7
    • Bunker A. J., Stanway E. R., 2004, preprint (astro-ph/0407562)
    • Bunker A. J., Stanway E. R., Ellis R. S., McMahon R. G., McCarthy P. J., 2003, MNRAS, 342, L47 (Paper II)
    • Bunker A. J., Stanway E. R., Ellis R. S., McMahon R. G., 2004, preprint (astro-ph/0403223)
    • Cimatti A. et al., 2002, A&A, 381, L68
    • Connolly A. J., Szalay A. S., Dickinson M., Subbarao M. U., Brunner R. J., 1997, ApJ, 486, L11
    • Coleman G. D., Wu C.-C., Weedman D. W., 1980, ApJS, 43, 393
    • Dickinson M. et al., 2004, ApJ, 600, L99
    • Dijkstra M., Haiman Z., Loeb A., 2004, ApJ, submitted (astro-ph/0403078)
    • Efstathiou G., Ellis R. S., Peterson B. A., 1988, MNRAS, 232, 431
    • Fan X. et al., 2001, AJ, 122, 2833
    • Fan X., Narayanan V. K., Strauss M. A., White R. L., Becker R. H., Pentericci L., Rix H.-W., 2002, AJ, 123, 1247
    • Ferguson H. C. et al., 2004, ApJ, 600, L107
    • Ferna´ndez-Soto A., Lanzetta K. M., Chen H.-W., 2003, MNRAS, 342, 1215
    • Fontana A., Poli F., Menci N., Nonino M., Giallongo E., Cristiani S., D'Odorico S., 2003, ApJ, 587, 544
    • Ford H. C. et al., 2002, BAAS, 34, 675
    • Fruchter A., Hook R., 2002, PASP, 114, 144
    • Gabasch A. et al., 2004, A&A, 421, 41
    • Giavalisco M., Dickinson M., 2002, ApJ, 550, 177
    • Giavalisco M. et al., 2004, ApJ, 600, L103
    • Gnedin N. Y., Ostriker J. P., 1997, ApJ, 486, 581
    • Gunn J. E., Peterson B. A., 1965, ApJ, 142, 1633
    • Hawley S. L. et al., 2002, AJ, 123, 3409
    • Iwata I., Ohta K., Tamura N., Ando M., Wada S., Watanabe C., Akiyama M., Aoki K., 2003, PASJ, 55, 415
    • Kennicutt R. C., 1998, ARA&A, 36, 189
    • Koekemoer A. M., Fruchter A. S., Hook R. N., Hack W., 2002, in Arribas S., Koekemoer A. M., Whitmore B., eds, HST Calibration Workshop. STScI, Baltimore, p. 325
    • Kogut A. et al., 2003, ApJS, 148, 161
    • Lanzetta K. M., Yahata N., Pascarelle S., Chen H.-W., Ferna´ndez-Soto A., 2002, ApJ, 570, 492
    • Leitherer C., Heckman T. M., 1995, ApJS, 96, 9
    • Lilly S. J., Tresse L., Hammer F., Crampton D., Le Fe`vre O., 1995, ApJ, 455, 108
    • Lilly S. J., Le Fevre´ O., Hammer F., Crampton D., 1996, ApJ, 460, L1
    • Madau P., Ferguson H. C., Dickinson M. E., Giavalisco M., Steidel C. C., Fruchter A., 1996, MNRAS, 283, 1388
    • Madau P., Pozzetti L., Dickinson M., 1998, ApJ, 498, 106
    • Madau P., Haardt F., Rees M., 1999, ApJ, 514, 648
    • Meurer G. R., Heckman T. M., Lehnert M. D., Leitherer C., Lowenthal J., 1997, AJ, 114, 54
    • Oke J. B., Gunn J. E., 1983, ApJ, 266, 713
    • Oke J. B., Korycansky D. G., 1982, ApJ, 225, 11
    • Ricotti M., 2002, MNRAS, 336, L33
    • Salpeter E. E., 1955, ApJ, 121, 161
    • Scalo J. M., 1986, Fund. Cosmic Phys., 11, 1
    • Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
    • Somerville R. S., Lee K., Ferguson H. C., Gardener J. P., Moustakas L. A., Giavalisco M., 2004, ApJ, 600, L171
    • Spergel D. N. et al., 2003, ApJS, 148, 175
    • Stanway E. R., 2004, PhD thesis, Univ. Cambridge
    • Stanway E. R., Bunker A. J., McMahon R. G., 2003, MNRAS, 342, 439 (Paper I)
    • Stanway E. R. et al., 2004a, ApJ, 604, L13
    • Stanway E. R., Bunker A. J., McMahon R. G., Ellis R. S., Treu T., McCarthy P. J., 2004b, ApJ, 607, 704 (Paper III)
    • Stanway E. R., McMahon R. G., Bunker A. J., 2004c, MNRAS, submitted (astro-ph/0403585)
    • Steidel C. C., Pettini M., Hamilton D., 1995, AJ, 110, 2519
    • Steidel C. C., Giavalisco M., Pettini M., Dickinson M. E., Adelberger K. L., 1996, ApJ, 462, L17
    • Steidel C. C., Adelberger K. L., Giavalisco M., Dickinson M. E., Pettini M., 1999, ApJ, 519, 1
    • Steidel C. C., Pettini M., Adelberger K. L., 2001, ApJ, 546, 665
    • Williams R. E. et al., 1996, AJ, 112, 1335
    • Williams R. E. et al., 1998, BAAS, 30, 1366
    • Yan H., Windhorst R. A., 2004a, ApJ, 600, L1
    • Yan H., Windhorst R. A., 2004b, ApJ, in press (astro-ph/0407493)
    • Yan H., Windhorst R. A., Cohen S., 2003, ApJ, 585, L93
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article