Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Erdelyi, R.; Hargreaves, J. (2008)
Publisher: EDP Sciences
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics
Aims. This paper studies the propagation of longitudinal magnetic tube waves in a stratified isothermal flux tube with an internal equilibrium background flow.\ud Methods. The governing differential equation is solved by means of Laplace transforms and temporal and spatial solutions are developed, with boundary conditions given by various footpoint drivers, namely a monochromatic source, a delta function pulse, and a sinusoidal pulse. The effect of the background flow is to introduce an increase in amplitude of the wave perturbation and changes in phase shift when compared with the corresponding static case.\ud Results. Results are presented and applied to conditions in the solar atmosphere. When the source is driven continuously, the forced atmospheric oscillations are shown to have large percentage differences when compared to the corresponding static case. For the free atmospheric oscillations, percentage increases in amplitude merely a few percent are found and vary greatly in height but are practically unaltered in time. Phase shifts up to a radian are introduced and weakly depend on both height and time.\ud Conclusions. The results presented in this paper may have interesting observational consequences, especially when using the tools of magnetic seismology of solar atmospheric wave guides (i.e. flux tubes from photosphere to corona) in light of the present and near-future high spatial and temporal resolution space missions, e.g. Hinode, Solar Dynamics Observatory, or Solar Orbiter.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aschwanden, M. 2006, Physics of the Solar Corona (Springer)
    • Ballai, I., Erdélyi, R., & Hargreaves, J. 2006, Phys. Plasmas, 13, 042108-1
    • Banerjee, D., Erdélyi, R., Oliver, R., & O'Shea, E. 2007, Sol. Phys., 246, 3
    • Buchlin, E., & Hassler, D. M. 2000, in AAS/Solar Physics Division Meeting, 32, 201
    • De Pontieu, B., & Erdélyi, R. 2006, Phil. Trans. Roy. Soc., A, 364, 383
    • De Pontieu, B., Erdélyi, R., & de Wijn, A. G. 2003a, ApJ, 595, L66
    • De Pontieu, B., Tarbell, T., & Erdélyi, R. 2003b, ApJ, 590, 502
    • De Pontieu, B., Erdélyi, R., & James, S. 2004, Nature, 430, 536
    • De Pontieu, B., Erdélyi, R., & De Moortel, I. 2005, ApJ, 624, 61
    • Erdélyi, R. 1996, Magnetohydrodynamic Phenomena in the Solar Atmosphere', ed. Y. Uchida, T. Kosugi, & H. S. Hudson (Kluwer), 47
    • Erdélyi, R. 2006, Phil. Trans. Roy. Soc. A, 364, 351
    • Erdélyi, R., & Goossens, M. 1996, A&A, 313, 664
    • Gloeckner, G., & Geiss, J. 1998, Space Sci. Rev., 86, 127
    • Goossens, M., Hollweg, J. V., & Sakurai, T. 1992, Sol. Phys., 138, 233
    • Holmes, M. 1995, Introduction to Perturbation Methods (Springer-Verlag)
    • Innes, D. E., Inhester, B., Axford, W. I., & Wilhelm, K. 1997, Nature, 386, 811
    • Joarder, P. S., & Narayanan, A. S. 2000, A&A, 359, 1211
    • Joarder, P. S., Nakariakov, V. M., & Roberts, B. 1997, Sol. Phys., 176, 285
    • Lamb, H. 1908, Proc. London Math. Soc., 7, 122
    • Lighthill, J. 1978, Waves in Fluids (Cambridge University Press), 93
    • Marsh, M. S., & Walsh, R. W. 2006, ApJ, 643, 540
    • Musielak, Z. E., & Ulmschneider, P. 2003, A&A, 400, 1057
    • Musielak, Z. E., Rosner, R., & Ulmschneider, P. 1989, ApJ, 337, 470
    • Nakariakov, V. M., & Roberts, B. 1995, Sol. Phys., 159, 213
    • Nakariakov, V. M., & Verwichte, E. 2005, Liv. Rev. Sol. Phys., 2, 3
    • Narayanan, A. S. 1991, Plasma Phys. Control. Fusion, 33, 333
    • Perez, M. E., Doyle, J. G., Erdélyi, R., & Sarro, L. M. 1999, A&A, 342, 279
    • Rae, I., & Roberts, B. 1982, ApJ, 265, 761
    • Roberts, B. 2004, MHD Waves in the Solar Atmosphere, in Waves, Oscillations and Small Scale Transient Events in the Solar Atmosphere, ed. R. Erdélyi, J. L. Ballester, & B. Fleck, SOHO 13, ESA-SP, 547, 1
    • Roberts, B., & Webb, A. R. 1982, Sol. Phys., 56, 5
    • Somasundaram, K., Venkatraman, S., & Sengottuvel, M. P. 1999, Plasma Phys. Control. Fusion, 41, 1421
    • Sutmann, G., Musielak, Z. E., & Ulmschneider, P. 1998, A&A, 340, 556
    • Taroyan, Y., & Erdélyi, R. 2008, Sol. Phys., submitted
    • Teriaca, L., Doyle, J. G., Erdélyi, R., & Sarro, L. M. 1999, A&A, 352, L99
    • Terra-Homem, M., Erdélyi, R., & Ballai, I. 2003, Sol. Phys., 217, 199
    • Tirry, W. J., Cadez, W. M., Erdélyi, R., & Goossens, M. 1998, A&A, 332, 786
    • Thomas, J. H. 1988, ApJ, 333, 407
    • Watanabe, T. 1975, Publ. Astron. Soc. Jpn, 27, 385
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article