Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mosses, Joanna; Turton, David; Lue, Leo; Sefcik, Jan; Wynne, Klaas (2015)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QC, QD

Classified by OpenAIRE into

arxiv: Physics::Optics
mesheuropmc: natural sciences
Controlled induction of crystal nucleation is a highly desirable but elusive goal. Attempts to speed up crystallization, such as high super saturation or working near a liquid–liquid critical point, always led to irregular and uncontrollable crystal growth. Here, we show that under highly nonequilibrium conditions of spinodal decomposition, water crystals grow as thin wires in a template-less formation of “Haareis”. This suggests that such nonequilibrium conditions may be employed more widely as mechanisms for crystal growth control.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. D. Erdemir, A. Y. Lee and A. S. Myerson, Acc Chem Res, 2009, 42, 621-629.
    • 2. T. Kawasaki and H. Tanaka, Proc Natl Acad Sci USA, 2010, 107, 14036-14041.
    • 3. D. Erdemir, S. Chattopadhyay, L. Guo, J. Ilavsky, H. Amenitsch, C. Segre and A. Myerson, Phys Rev Lett, 2007, 99, 115702.
    • 4. A. Dey, P. H. H. Bomans, F. A. Mueller, J. Will, P. M. Frederik, G. De With and N. a. J. M. Sommerdijk, Nat Mater, 2010, 9, 1010-1014.
    • 5. P. Raiteri and J. D. Gale, J Am Chem Soc, 2010, 132, 17623-17634.
    • 6. C. J. Stephens, Y.-Y. Kim, S. D. Evans, F. C. Meldrum and H. K. Christenson, J Am Chem Soc, 2011, 133, 5210-5213.
    • 7. A. F. Wallace, L. O. Hedges, A. Fernandez-Martinez, P. Raiteri, J. D. Gale, G. A. Waychunas, S. Whitelam, J. F. Banfi eld and J. J. De Yoreo, Science, 2013, 341, 885-889.
    • 8. D. Gebauer, A. Voelkel and H. Coelfen, Science, 2008, 322, 1819-1822.
    • 9. T. Kovács, F. C. Meldrum and H. K. Christenson, J Phys Chem Lett, 2012, 3, 1602-1606.
    • 10. R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley and D. Gebauer, Nat Commun, 2011, 2.
    • 11. A. Jawor-Baczynska, J. Sefcik and B. D. Moore, Cryst Growth Des, 2013, 13, 470-478.
    • 12. Y. Georgalis, A. Kierzek and W. Saenger, J Phys Chem B, 2000, 104, 3405-3406.
    • 13. P. Tenwolde and D. Frenkel, Science, 1997, 277, 1975-1978.
    • 14. L. Filobelo, O. Galkin and P. Vekilov, J Chem Phys, 2005, 123, 014904.
    • 15. L. Xu, S. V. Buldyrev, H. E. Stanley and G. Franzese, Phys Rev Lett, 2012, 109, 95702.
    • 16. Y. Wang, A. Lomakin, R. F. Latypov, J. P. Laubach, T. Hideshima, P. G. Richardson, N. C. Munshi, K. C. Anderson and G. B. Benedek, J Chem Phys, 2013, 139, 121904.
    • 17. P. Bonnett, K. Carpenter, S. Dawson and R. Davey, Chem Commun, 2003, 698-699.
    • 18. R. J. Davey, S. L. M. Schroeder and J. H. Ter Horst, Angew Chem Int Edit, 2013, 52, 2166-2179.
    • 19. V. Talanquer and D. Oxtoby, J Chem Phys, 1998, 109, 223-227.
    • 20. J. Lutsko and G. Nicolis, Phys Rev Lett, 2006, 96, 046102.
    • 21. L. R. Gomez and D. A. Vega, Phys Rev E, 2011, 83, 021501.
    • 22. L. C. Jacobson and V. Molinero, J Am Chem Soc, 2011, 133, 6458-6463.
    • 23. P. Méndez-Castro, J. Troncoso, J. Peleteiro and L. Romaní, Phys Rev E, 2013, 88, 042107.
    • 24. Y. Yoshimura, S. T. Stewart, M. Somayazulu, H.-K. Mao and R. J. Hemley, J Phys Chem B, 2011, 115, 3756-3760.
    • 25. K. Kikuchi, T. Kameda, K. Higuchi, A. Yamashita and W. G. M. F. N. C. O. S. Crystals, Atmospheric Research, 2013, 132- 133, 460-472.
    • 26. A. Wegener, Die Naturwissenschaften, 1918, 6, 598-601.
    • 27. S. Kawanishi, T. Sasuga and M. Takehisa, J Phys Soc Jpn, 1982, 51, 1579-1583.
    • 28. S. Kawanishi, T. Sasuga and M. Takehisa, J Phys Soc Jpn, 1981, 50, 3080-3084.
    • 29. S. Rzoska, J. Ziolo, A. Drozd-Rzoska, J. L. Tamarit and N. Veglio, in J Phys-Condens Mat, 2008, vol. 20, p. 244124.
    • 30. K. Merkel, A. Kocot, R. Wrzalik and J. Ziolo, J Chem Phys, 2008, 129, 074503.
    • 31. M. Rovira-Esteva, A. Murugan, L. C. Pardo, S. Busch, M. D. Ruiz-Martin, M. S. Appavou, J. L. Tamarit, C. Smuda, T. Unruh, F. J. Bermejo, G. J. Cuello and S. J. Rzoska, Phys Rev B, 2010, 81, 092202.
    • 32. M. Rovira-Esteva, N. A. Murugan, L. C. Pardo, S. Busch, J. L. Tamarit, G. J. Cuello and F. J. Bermejo, J Chem Phys, 2012, 136, 124514.
    • 33. D. A. Turton, D. F. Martin and K. Wynne, Phys Chem Chem Phys, 2010, 12, 4191-4200.
    • 34. J. Ketelaar, L. Devries, P. Vanvelden and J. Kooy, Recl Trav Chim Pay B, 1947, 66, 733-745.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article