LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Venegas, R; Umnova, O
Publisher: Acoustical Society of America
Languages: English
Types: Article
Subjects: built_and_human_env

Classified by OpenAIRE into

arxiv: Computer Science::Sound
Identifiers:doi:10.1121/1.3644915
Granular materials have been conventionally used for acoustic treatment due to their sound absorptive\ud and sound insulating properties. An emerging field is the study of the acoustical properties of\ud multiscale porous materials. An example of these is a granular material in which the particles are\ud porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical\ud properties of these materials are introduced. Image processing techniques have been employed to\ud estimate characteristic dimensions of the materials. The model predictions are compared with measurements\ud on expanded perlite and activated carbon showing satisfactory agreement. It is concluded\ud that a double porosity granular material exhibits greater low-frequency sound absorption at reduced\ud weight compared to a solid-grain granular material with similar mesoscopic characteristics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 5S. R. Pride, F. D. Morgan, and A.F. Gangi, “Drag forces of porousmedium acoustics,” Phys. Rev. B 47, 4964-4975 (1993).
    • 6D. Lafarge, “Propagation du son dans les mate´riaux poreux a` structure rigide sature´s par un fluide viscothermique,” Ph.D. thesis, Universite´ du Maine, Le Mans, France (1993) (Sound propagation in rigid porous media saturated by a viscothermal fluid).
    • 7J. L. Auriault, L. Borne, and R. Chambon, “Dynamics of porous saturated media, checking of the generalized law of Darcy,” J. Acoust. Soc. Am. 77(5), 1641-1650 (1985).
    • 8J. F. Allard, M. Henry, J. Tizianel, L. Kelders, and W. Lauriks, “Sound propagation in air-saturated random packings of beads,” J. Acoust. Soc. Am. 104, 2004-2007 (1998).
    • 9F. Asdrubali and K. V. Horoshenkov, “The acoustic properties of expanded clay granulates,” Building Acoust. 9(2), 85-98 (2002).
    • 10V. V. Voronina and K.V. Horoshenkov, “A new empirical model for the acoustic properties of loose granular media,” Appl. Acoust. 64, 415-432 (2004).
    • 11A. M. Chapman and J. J. L. Higdon, “Oscillatory Stokes flow in periodic porous media,” Phys. Fluids 4, 2099-2116 (1992).
    • 12O. Umnova, K. Attenborough, and K. M. Li, “Cell model calculations of dynamic drag parameters in packings of spheres,” J. Acoust. Soc. Am. 107, 313-318 (2000).
    • 13O. Umnova, K. Attenborough, and K. M. Li, “A cell model for the acoustical properties of packings of spheres,” Acta Acust. 87, 226-235 (2001).
    • 14E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, edited by J. Ehlers, K. Hepp, R. Kippenhahn, and J. Zittartz (Springer-Verlag, Berlin,1980).
    • 15J. L. Auriault, C. Boutin, and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media (Wiley, London, 2009).
    • 16S. Gasser, F. Paun, and Y. Brechet, “Absorptive properties of rigid porous media: Application to face centered cubic sphere packing,” J. Acoust. Soc. Am. 117(4), 2090-2099 (2005).
    • 17C.-Y. Lee, M. J. Leamy, and J. H. Nadler, “Acoustic absorption calculation in irreducible porous media: A unified computational approach,” J. Acoust. Soc. Am. 126(4), 1862-1870 (2009).
    • 18C. Boutin and C. Geindreau, “Estimates and bounds of dynamic permeability of granular media,” J. Acoust. Soc. Am. 124(6), 3576-3593 (2008).
    • 19C. Boutin and C. Geindreau, “Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range,” Phys. Rev. E 82, 036313 (2010).
    • 20J. L. Auriault and C. Boutin, “Deformable porous media with double porosity III: Acoustics,” Transp. Porous Media 14, 143-162 (1994).
    • 21C. Boutin, P. Royer, and J. L. Auriault, “Acoustic absorption of porous surfacing with dual porosity,” Int. J. Solids Struct. 35, 4709-4737 (1998).
    • 22X. Olny and C. Boutin, “Acoustic wave propagation in double porosity media,” J. Acoust. Soc. Am 114(1), 73-89 (2003).
    • 23G. Pispola, K. V. Horoshenkov, and A. Khan, “Comparison of two modeling approaches for highly heterogeneous porous media,” J. Acoust. Soc. Am. 121(2), 961-966 (2007).
    • 24N. Atalla, F. Sgard, X. Olny, and R. Panneton, “Acoustic absorption of macro-perforated porous materials,” J. Sound. Vibr. 243(4), 659-678 (2001).
    • 25E. Gourdon and M. Seppi, “Extension of double porosity model to porous materials containing specific porous inclusions,” Acta Acust. United Acust. 96(2), 275-291 (2010).
    • 26J. Chastanet, P. Royer, and J.-L. Auriault,“Acoustics with wall-slip flow of gas saturated porous media,” Mech. Res. Commun. 31, 277-286 (2004).
    • 27J. Chastanet, P. Royer and J.-L. Auriault,“Flow of low pressure gas through dual-porosity media,” Transp. Porous Media 66(3), 457-479 (2007).
    • 28R. Venegas and O. Umnova, “Numerical modelling of sound absorptive properties of double porosity granular materials,” in Proceedings of Comsol Conference 2010, Paris, France, 2010, Paper No. 8303, http:// www.comsol.com/papers/8303 (Last viewed April 14, 2011).
    • 29R. J. S. Brown, “Connection between formation factor for electricalresistivity and fluid-solid coupling factor in Biot equations for acoustic waves in fluid-filled porous media,” Geophysics 45, 1269-1275 (1980).
    • 30Y. Champoux and J. F. Allard, “Dynamic tortuosity and bulk modulus in air-saturated porous media,” J. Appl. Phys. 70(4), 1975-1979 (1991).
    • 31M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972), Chap. 10.
    • 32ISO 10534-2:2001, “Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method, 2001.
    • 33J. Serra. Image Analysis and Mathematical Morphology (Academic Press, London, 1982), Chap. 11.
    • 34W. Man, A. Donev, F. Stillinger, M. Sullivan, W. Russel, D. Heeger, S. Inati, S. Torquato, and P. M. Chaikin, “Experiments on random packings of ellipsoids,” Phys. Rev. Lett. 94, 198001 (2005).
    • 35C. Song, P. Wang, and H.A. Makse, “A phase diagram for jammed matter,” Nature 453, 629-632 (2008).
    • 36J. Plateau, Statique Expe´rimentale et The´orique des Liquides Soumis aux Seules Forces Mole´culaires (Gauthier, Paris, 1873), Vol. 1, Chap. 5.
    • 37N.J. Mills, Polymer Foams Handbook: Engineering and Biomechanics, Applications and Design Guide (Butterworth-Heinemann, London, 2007), Chap. 1.
    • 38D. L. Weaire, The Kelvin Problem: Foam Structures of Minimal Surface Area (Taylor and Francis, London, 2000).
    • 39C. Perrot, F. Chevillotte, and R. Panneton, “Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments,” J. Appl. Phys. 103, 024909 (2008).
    • 40F. Chevillotte, C. Perrot, and R. Panneton,“Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams,” J. Acoust. Soc. Am.128(4), 1766-1776 (2010).
    • 41T. J. Chung, Computational Fluid Dynamics (Cambridge University Press, Cambridge, 2002), Chaps. 10 and 12.
    • 42W. Zimmerman, Process Modelling and Simulation with Finite Element Methods, Series on Stability (World Scientific, Singapore, 2004), p. 182.
    • 43K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer-Verlag, Berlin, 2005); see also http://www.icsi.berkeley.edu/~storn/code.html (Last viewed March 31, 2011).
    • 44EN 29053:1993, “Acoustics. Materials for acoustical applications. Determination of airflow resistance,” 1993.
    • 45D. D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, 1998), pp. 5 and 50.
    • 46V. F. Kozlov, A. V. Fedorov, and N. D. Malmuth, “Acoustic properties of rarefied gases inside pores of simple geometries,” J. Acoust. Soc. Am. 117, 3402-3411 (2005).
    • 47O. Umnova, D. Tsiklauri, and R. Venegas, “Effect of boundary slip on the acoustical properties of microfibrous materials,” J. Acoust. Soc. Am. 126(4), 1850-1861 (2009).
    • 48C. D. Smith and T. L. Parrott, “Comparison of three methods for measuring acoustic properties of bulk materials,” J. Acoust. Soc. Am. 74(5), 1577-1582 (1983).
    • 49R. Raspet, C. J. Hickey, and J. M. Sabatier, “The effect of evaporationcondensation on sound propagation in cylindrical tubes using the low reduced frequency approximation,” J. Acoust. Soc. Am. 105(1), 65-73 (1999).
    • 50J. Valenza, C.-J. Hsu, R. Ingale, N. Gland, H. A. Makse, and D. L. Johnson, “Dynamic effective mass of granular media and the attenuation of structure-borne sound,” Phys. Rev. E 80, 051304 (2009).
    • 51J.R. Wright, “The virtual loudspeaker cabinet,” J. Audio Eng. Soc. 51(4), 244-247 (2003).
    • 52F. Bechwati, Acoustics of activated carbon, Ph.D. thesis, University of Salford, Salford, UK, 2008.
    • 53T. J. Mellow, O. Umnova, K. Drossos, K. Holland, A. Flewitt, and L. Ka¨rkka¨inen, “On the adsorption-desorption relaxation time of carbon in very narrow ducts,” in Proceedings of Acoustics 08, CD-ROM 01, pp. 795-800, Paris, France, 2008, available at http://intellagence.eu.com/acoustics2008/ acoustics2008/cd1/data/articles/000871.pdf (Last viewed April 14, 2011).
    • 54Y. Okudaira, Y. Kurihara, H. Ando, M. Satoh, and K. Miyanami, “Sound absorption measurements for evaluating dynamic physical properties of a powder bed,” Powder Technol. 77(1), 39-48 (1993).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article