LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fulcher, Corinne; McGraw, Paul V.; Roach, Neil W.; Whitaker, David; Heron, James (2016)
Publisher: The Royal Society
Journal: Proceedings of the Royal Society B: Biological Sciences
Languages: English
Types: Article
Subjects: 133, duration adaptation, spatial selectivity, RE, Research Article, size, 1001, visual, after-effect, time perception, 42
A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast to the orderly arrangement of neurons tasked with spatial processing. In the current study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate aftereffects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus’ duration. Our results indicate that these aftereffects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus – the larger the adapting stimulus the greater the spatial spread of the aftereffect. We construct a simple model to test predictions based on overlapping adapted vs non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing.

Share - Bookmark

Funded by projects

  • WT | Sensory prediction: the role...

Cite this article