LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tomlinson, A.; Bull, L. (2001)
Publisher: Massachusetts Institute of Technology Press
Languages: English
Types: Article
Subjects:
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Axlerod, R. (1987). The evolution of strategies in the iterated prisoner's dilemma. In L. Davies (Ed.), Genetic algorithms and simulated annealing (pp. 32-41). San Mateo, CA: Morgan Kaufmann.
    • 2. Booker, L. B. (1985). Improving the performance of genetic algorithms in classifier systems. In J. J. Grefenstette (Ed.), Proceedings of the First International Conference on Genetic Algorithms and Their Applications (pp. 80-92). Hillsdale, NJ: Erlbaum.
    • 3. Booker, L. B. (1989). Triggered rule discovery in classifier systems. In J. D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms (pp. 265-274). San Mateo, CA: Morgan Kaufmann.
    • 4. Bull, L. (1997). Evolutionary computing in multi-agent environments: Partners. In T. Back (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms (pp. 370-377). San Mateo, CA: Morgan Kaufmann.
    • 5. Bull, L. (1999). On the evolution of multicellularity and eusociality. Artificial Life, 5, 1-15.
    • 6. Bull, L., & Fogarty, T. C. (1996). Artificial symbiogenesis. Artificial Life, 2, 269-292.
    • 7. Cobb, H. G., & Grefenstette, J. J. (1991). Learning the persistence of actions in reactive control rules. In Proceedings of the Eighth International Machine Learning Workshop (pp. 293-297). San Mateo, CA: Morgan Kaufmann.
    • 8. Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers. Machine Learning, 6, 161-182.
    • 9. Grefenstette, J. J. (1987). Multilevel credit assignment in a genetic learning system. In J. J. Grefenstette (Ed.), Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms (pp. 202-209). Hillsdale, NJ: Erlbaum.
    • 10. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
    • 11. Holland, J. H. (1990). Concerning the emergence of tag-mediated lookahead in classifier systems. In S. Forrest (Ed.), Emergent computation (pp. 188-201). Cambridge, MA: MIT Press.
    • 12. Holland, J. H. (1995). Hidden order. Reading, MA: Addison-Wesley.
    • 13. Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A. Waterman, & F. Hayes Roth (Eds.), Pattern-directed inference systems (pp. 313-329). New York: Academic Press.
    • 14. Ikegami, T., & Kaneko, K. (1990). Genetic fusion. Physical Review Letters, 65, 3352-3355.
    • 15. Khakhina, L. N. (Ed.). (1992). Concepts of symbiogenesis: History of symbiogenesis as an evolutionary mechanism. New Haven, CT: Yale University Press.
    • 16. Lindgren, K., & Nordhal, M. G. (1994). Cooperation and community structure in artificial ecosystems. Artificial Life, 1(1), 15-38.
    • 17. Margulis, L. (1970). Origin of eukaryotic cells. New Haven, CT: Yale University Press.
    • 18. Maynard Smith, J., & Szathmary, E. (1993). The origin of chromosomes 1: Selection for linkage. Theoretical Biology, 164, 437-466.
    • 19. Maynard Smith, J., & Szathmary, E. (1995). The major transitions in evolution. Oxford: Freeman.
    • 20. Riolo, R. (1990). Lookahead planning and latent learning in a classifier system. In J. Meyer & S. W. Wilson (Eds.), From animals to animats (pp. 316-326). Cambridge, MA: MIT Press.
    • 21. Smith, R. E. (1994). Memory exploitation in learning classifier systems. Evolutionary Computation, 2, 199-220.
    • 22. Stolzmann, W. (2000). An introduction to anticipatory classifier systems. In P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Learning classifier systems-from foundations to applications (pp. 175-194). Berlin: Springer.
    • 23. Tomlinson, A., & Bull, L. (1999). A zeroth-level corporate classifier system. In A. S. Wu (Ed.), Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program (pp. 306-313). Orlando, FL: Gecco.
    • 24. Wilson, S. W. (1985). Knowledge growth in an artificial animal. In J. J. Grefenstette (Ed.), Proceedings of an International Conference on Genetic Algorithms and their Applications (pp. 16-23). Hillsdale, NJ: Erlbaum.
    • 25. Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation, 2, 1-18.
    • 26. Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3, 149-176.
    • 27. Wilson, S. W. (1998). Generalization in the XCS classifier system. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, & R. L. Riolo (Eds.), Proceedings of the Third Annual Genetic Programming Conference (pp. 665-674). San Mateo, CA: Morgan Kaufmann.
    • 28. Wilson, S. W., & Goldberg, D. E. (1989). A critical review of classifier systems. In J. D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms (pp. 244-255). San Mateo, CA: Morgan Kaufmann.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article