Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yongqiang Tan; Jialiang Zhang; Yanqing Wu; Chunlei Wang; Vladimir Koval; Baogui Shi; Haitao Ye; Ruth McKinnon; Giuseppe Viola; Haixue Yan (2015)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article
Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797-818 (1999).
    • 2. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954-957 (2007).
    • 3. Yang, L. F. et al. Bipolar loop-like non-volatile strain in the (001)-oriented Pb (Mg1/3Nb2/3)O3-PbTiO3 single crystals. Sci. Rep. 4, 4591 (2014).
    • 4. Dawber, M. K., Rabe, M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083-1130 (2005).
    • 5. Gruverman, A. & Kholkin, A. Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69, 2443-2474 (2006).
    • 6. Shaw, T. M., Trolier-McKinstry, S. & McIntyre, P. C. The Properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263-298 (2000).
    • 7. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650-1653 (2004).
    • 8. Spaldin, N. A. Fundamental size limits in ferroelectricity. Science 304, 1606-1607 (2004).
    • 9. Spanier, J. E. et al. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735-739 (2006).
    • 10. Yun, W. S., Urban, J. J., Gu, Q. & Park, H. K. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447-450 (2002).
    • 11. Polking, M. J. et al. Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 11, 700-709 (2012).
    • 12. Wu, C. M. et al. Controllability of vortex domain structure in ferroelectric nanodot: fruitful domain patterns and transformation paths. Sci. Rep. 4, 3946 (2014).
    • 13. Hoshina, T. et al. Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47, 7607-7611 (2008).
    • 14. Wada, S. et al. Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn. J. Appl. Phys. 46, 7039-7043 (2007).
    • 15. Kniepkamp, H. & Heywang, W. Z. Depolarisationseffekte in polykristallin gesinterem BaTiO3. Angew. Phys. 6, 385 (1954).
    • 16. Kinoshita, K. & Yamaji, A. Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47, 371-373 (1976).
    • 17. Arlt, G., Hennings, D. & De With, G. Dielectric properties of fine-grained barium-titanate ceramics. J. Appl. Phys. 58, 1619-1625 (1985).
    • 18. Bell, A. J., Moulson, A. J. & Cross, L. E. The effect of grain size on the permittivity of BaTiO3. Ferroelectrics 54, 147-150 (1984).
    • 19. Bell, A. J. Grain size effects in barium titanate - revisited. Paper presented at Applications of Ferroelectrics, Proceedings of the Ninth IEEE International Symposium, University Park, PA. IEEE. (DOI:10.1109/ISAF.1994.522286) (7 Aug 1991).
    • 20. Buessem, W. R., Cross, L. E. & Goswami, A. K. Phenomenological theory of high permittivity in fine-grained barium titanate. J. Am. Ceram. Soc. 49, 33-36 (1966).
    • 21. Ghosh, D. et al. Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes. Adv. Func. Mater. 24, 885-896 (2014).
    • 22. Randall, C. A., Kim, N., Kucera, J., Cao, W. W. & Shrout, T. R. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677-688 (1988).
    • 23. Zhang, H. T. et al. The grain size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Nanotechnology 20, 385708 (2009).
    • 24. Huo, S. X., Yuan, S. L., Tian, Z. M., Wang, C. H. & Qiu, Y. Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by pechini method. J. Am. Ceram. Soc. 95, 1383-1387 (2012).
    • 25. Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics. London: Academic, UK, 1971.
    • 26. Takahashi, H. et al. Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, L30-L32 (2006).
    • 27. Karaki, T., Yan, K. & Adachi, M. Barium titanate piezoelectric ceramics manufactured by two-step sintering. Jpn. J. Appl. Phys., 46, 7035-7038 (2007).
    • 28. Zheng, P., Zhang, J. L., Tan, Y. Q. & Wang, C. L. Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 60, 5022-5030 (2012).
    • 29. Shao, S. F. et al. High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through solid-state reaction route. J. Physics D: Appl. Phys., 41, 125408 (2008).
    • 30. Ding, S. H., Song, T. X., Yang, X. J. & Luo, G. H. Effect of grain size of BaTiO3 ceramics on dielectric properties. Ferroelectrics 402, 55-59 (2010).
    • 31. Huan, Y., Wang, X. H., Fang, J. & Li, L. T. Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J. Am. Ceram. Soc. 96, 3369-3371 (2013).
    • 32. Egerton, L. & Koonce, S. E. Effect of firing cycle on structure and some dielectric and piezoelectric properties of barium titanate ceramic. J. Am. Ceram. Soc. 38, 412-418 (1955).
    • 33. Viola, G. et al. Effect of grain size on domain structures, dielectric and thermal depoling of Nd-substituted bismuth titanate ceramics. Appl. Phys. Lett. 103, 182903 (2013).
    • 34. Arlt, G. & Sasko, P. Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J. Appl. Phys. 51, 4956-4960 (1980).
    • 35. Arlt, G. Twinning in ferroelectric and ferroelastic ceramics: stress relief. J. Mater. Sci. 25, 2655-2666 (1990).
    • 36. Baxter, P., Hellicar, N. J. & Lewis, B. Effect of additives of limited solid solubility on ferroelectric properties of barium titanate ceramics. J. Am. Ceram. Soc. 42, 465-470 (1956).
    • 37. Devries, R. C. & Burke, J. E. Microstructure of barium titanate ceramics. J. Am. Ceram. Soc. 40, 200-206 (1957).
    • 38. Chou, J. F., Lin, M. H. & Lu, H. Y. Ferroelectric domains in pressureless-sintered barium titanate. Acta Mater. 48, 3569-3579 (2000).
    • 39. Cao, W. W. & Randall, C. A. Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids 57, 1499-1505 (1996).
    • 40. Eriksson, M. et al. Ferroelectric domain structures and electrical properties of finegrained lead-free sodium potassium niobate ceramics. J. Am. Ceram. Soc. 94, 3391-3396 (2011).
    • 41. Scott, J. F. Cylinder stress in nanostructures: effect on domains in nanowires, nanotubes, and nano-disks. J. Phys.: Condens. Matter 26, 212202 (2014).
    • 42. Li, S. P., Cao, W. W. & Cross, L. E. The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. J. Appl. Phys. 69, 7219-7224 (1991).
    • 43. Zhang, Q. M., Wang, H., Kim, N. & Cross, L. E. Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, 454 (1991).
    • 44. Demartin, M. & Damjanovic, D. Dependence of the direct piezoelectric effect in coarse and fine grain barium titanate ceramics on dynamic and static pressure. Appl. Phys. Lett. 68, 3046-3048 (1996).
    • 45. Damjanovic, D. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788-1797 (1997).
    • 46. Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663-2676 (2005).
    • 47. Arlt, G. & Pertsev, N. A. Force constant and effective mass of 90u domain walls in ferroelectric ceramics. J. Appl. Phys. 70, 2283-2289 (1991).
    • 48. Luchaninov, A. G., Shil'nikov, A. V., Shuvalov, L. A. and Shipkova, I. Ju. The domain processes and piezoeffect in polycrystalline ferroelectrics. Ferroelectrics 98, 123-126 (1989).
    • 49. Viola, G., Chong, K. B., Guiu, F. & Reece, M. J. Role of internal field and exhaustion in ferroelectric switching. J. Appl. Phys. 115, 034106 (2014).
    • 50. Cao, W. Ferroelectrics: The strain limits on switching. Nat. Mater. 4, 727-728 (2005).
    • 51. Martirena, H. T. & Burfoot, J. C. Grain-size effects on properties of some ferroelectric ceramics. J. Phys. C: Solid State Phys. 7, 3182-3192 (1974).
    • 52. Waser, R. Solubility of hydrogen defects in doped and undoped BaTiO3. J. Am. Ceram. Soc. 71, 58-63 (1988).
    • 53. Yoo, I. K. & Desu, S. B. Fatigue parameters of lead zirconate titanate thin films. Mater. Res. Soc. Symp. Proc. 243, 323 (1992).
    • 54. Scott, J. F. & Paz de Arajuo, C. A. Ferroelectric memories. Science 246, 1400-1405 (1989).
    • 55. He, L. & Vanderbilt, D. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003).
    • 56. Choi, Y., Hoshina, T., Takeda, H. & Tsurumi, T. Effect of oxygen vacancy and oxygen vacancy migration on dielectric response of BaTiO3-Based Ceramics. Jpn. J. Appl. Phys. 50, 031504 (2011).
    • 57. Oyama, T., Wada, N. & Takagi, H. Trapping of oxygen vacancy at grain boundary and its correlation with local atomic configuration and resultant excess energy in barium titanate: a systematic computational analysis. Phys. Rev. B 82, 134107 (2010).
    • 58. Kang, B. S., Choi, S. K. & Park, C. H. Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400-700uC. J. Appl. Phys. 94, 1904-1911 (2003).
    • 59. Karthik, J., Damodaran, A. R. & Martin, L. W. Effect of 90u domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 108, 167601 (2012).
    • 60. Yan, H. X. et al. The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107-118 (2011).
    • 61. Viola, G. et al. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics. J. Adv. Dielectr. 3, 1350007 (2013).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article