LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aljaaf, AJ; Al-Jumeily, D; Hussain, A; Fergus, P; Dawson, T; Al-Jumaily, M
Languages: English
Types: Unknown
Subjects: QA75, R1
Heart failure comes in the top causes of death worldwide. The number of deaths from heart failure exceeds the number of deaths resulting from any other causes. Recent studies have focused on the use of machine learning techniques to develop predictive models that are able to predict the incidence of heart failure. The majority of these studies have used a binary output class, in which the prediction would be either the presence or absence of heart failure. In this study, a multi-level risk assessment of developing heart failure has been proposed, in which a five risk levels of heart failure can be predicted using C4.5 decision tree classifier. On the other hand, we are boosting the early prediction of heart failure through involving three main risk factors with the heart failure data set. Our predictive model shows an improvement on existing studies with 86.5% sensitivity, 95.5% specificity, and 86.53% accuracy.

Share - Bookmark

Download from

Cite this article