Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rizzelli, S.L.; Jones, E.R.; Thompson, K.L.; Armes, S.P. (2015)
Publisher: Springer Verlag
Languages: English
Types: Article
In this work, we show that amphiphilic diblock copolymer worms prepared via alcoholic RAFT dispersion polymerization can be used to stabilize non-aqueous Pickering emulsions. A previously reported synthesis protocol based on polymerization-induced self-assembly (PISA) was modified to enable the preparation of poly(2-(dimethylamino)ethyl methacrylate)-poly(benzyl methacrylate) (PDMA-PBzMA) worm-like particles directly in methanol at relatively high solids. A dilute dispersion of these highly anisotropic nanoparticles was then homogenized with sunflower oil to produce sunflower oil-in-methanol emulsions. The mean droplet diameter ranged from 9 to 104 μm, depending on the nanoparticle concentration and the stirring rate used for homogenization. The sunflower oil content was increased systematically, with stable emulsions being obtained up to a volume fraction of 0.60. In all cases, the sunflower oil droplets gradually increase in size on ageing for up to 4 days. However, stable emulsions were obtained after this time period, with no further change in the mean droplet diameter for at least 2 months on standing at ambient temperature. Turbidimetry studies of the continuous phase after sedimentation of the relatively dense emulsion droplets indicated that the initial adsorption efficiency of the PDMA-PBzMA worms is very high, but this is reduced significantly as the droplet diameter gradually increases during ageing. There is a concomitant increase in fractional surface coverage over the same time period, suggesting that the increase in droplet diameter is the result of limited coalescence, rather than an Ostwald ripening mechanism.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2. Pickering SU (1907) Emulsions. J Chem Soc 91:2001-2021.
    • doi:10.1039/ct9079102001 4. Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. PCCP 1 (12):3007-3016.
    • 35 doi:10.1039/a902209k
    • 5. Binks BP, Lumsdon SO (2000) Effects of oil type and aqueous phase
    • hydrophobicity. PCCP 2 (13):2959-2967. doi:10.1039/b002582h 6. Binks BP, Whitby CP (2004) Silica particle-stabilized emulsions of
    • 40 silicone oil and water: Aspects of emulsification. Langmuir 20 (4):1130- 1137. doi:10.1021/la0303557 7. Gautier F, Destribats M, Perrier-Cornet R, Dechezelles JF, Giermanska J, Heroguez V, Ravaine S, Leal-Calderon F, Schmitt V (2007) Pickering emulsions with stimulable particles: from highly- to weakly-covered
    • 45 interfaces. PCCP 9 (48):6455-6462. doi:10.1039/b710226g
    • 8. Lagaly G, Reese M, Abend S (1999) Smectites as colloidal stabilizers
    • and nonionic surfactants. Appl Clay Sci 14 (1-3):83-103.
    • doi:10.1016/s0169-1317(98)00051-9
    • 50 9. Binks BP, Clint JH, Whitby CP (2005) Rheological behavior of waterin-oil emulsions stabilized by hydrophobic bentonite particles. Langmuir 21 (12):5307-5316. doi:10.1021/la050255w 10. Bon SAF, Colver PJ (2007) Pickering miniemulsion polymerization using Laponite clay as a stabilizer. Langmuir 23 (16):8316-8322.
    • 55 doi:10.1021/la701150q
    • 11. Guillot S, Bergaya F, de Azevedo C, Warmont F, Tranchant JF (2009)
    • particles. J Colloid Interface Sci 333 (2):563-569.
    • doi:10.1016/j.jcis.2009.01.026
    • 60 12. Cui YN, Threlfall M, van Duijneveldt JS (2011) Optimizing organoclay stabilized Pickering emulsions. J Colloid Interface Sci 356 (2):665-671. doi:10.1016/j.jcis.2011.01.046 13. Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates .1. Microstructured
    • 65 hollow spheres. Langmuir 12 (10):2374-2384. doi:10.1021/la9506786
    • 14. Binks BP, Lumsdon SO (2001) Pickering emulsions stabilized by
    • monodisperse latex particles: Effects of particle size. Langmuir 17
    • (15):4540-4547. doi:10.1021/la0103822 15. Laib S, Routh AF (2008) Fabrication of colloidosomes at low
    • R70temperature for the encapsulation of thermally sensitive compounds. J Colloid Interface Sci 317 (1):121-129. doi:10.1016/j.jcis.2007.09.019 e 16. Walsh A, Thompson KL, Armes SP, York DW (2010) PolyamineFunctivonal Sterically Stabilized Latexes for Covalently Cross-Linkable Colloidosomes. Langmuir 26 (23):18039-18048. doi:10.1021/la103804y i
    • 75 17. Thompson eKL, Armes SP (2010) From well-defined macromonomers w to sterically-stabilised latexes to covalently cross-linkable colloidosomes: exerting control over multiple length scales. Chem Commun 46 (29):5274-5276. doi:10.1039/c0cc01362e 18. Atanase LI, Riess G (2013) Block copolymer stabilized nonaqueous
    • 80 biocompatible sub-micron emulsions for topical applications. Int J Pharm 448 (2):339-345. doi:10.1016/j.ijpharm.2013.03.051
    • 19. Binks BP, Lumsdon SO (2000) Influence of particle wettability on the
    • type and stability of surfactant-free emulsions. Langmuir 16 (23):8622-
    • 8631. doi:10.1021/la000189s
    • 85 20. Binks BP (2002) Particles as surfactants - similarities and differences. Current Opinion in Colloid & Interface Science 7 (1-2):21-41. doi:10.1016/s1359-0294(02)00008-0 21. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100:503-546.
    • 90 doi:10.1016/s0001-8686(02)00069-6
    • Page 9 of 12
    • 22. McMahon JD, Hamill RD, Petersen RV (1963) Emulsifying effects of
    • 52 (12):1163-&. doi:10.1002/jps.2600521214
    • 23. Molau GE (1965) Heterogeneous polymer systems .I. Polymeric oil-
    • 5 in-oil emulsions. Journal of Polymer Science Part a-General Papers 3
    • (4PA):1267-&. doi:10.1002/pol.1965.100030402
    • 24. Periard J, Banderet A, Riess G (1970) Emulsifying effect of block and
    • B-Polymer Letters 8 (2):109-&. doi:10.1002/pol.1970.110080210
    • 10 25. Crespy D, Landfester K (2011) Making dry fertile: a practical tour of non-aqueous emulsions and miniemulsions, their preparation and some applications. Soft Matter 7 (23):11054-11064. doi:10.1039/c1sm06156a F 26. Klapper M, Nenov S, Haschick R, Müller K, Müllen K (2008) Oil-ino Oil Emulsions: A Unique Tool for the Formation of Polymer
    • 15 Nanoparticles. Acc Chem Res 41 (9):1190-1201. doi:10.1021/ar8001206 r 27. Jackson WM, Drury JS (1959) Miscibility of organic solvent pairs. P Ind Eng Chem 51 (12):1491-1493. doi:10.1021/ie50600a039 templating. Nature 389 (6654):948-951. doi:10.1038/4010e5 28. Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion e
    • 20 29. Crespy D, Landfester K, Schubert US, Schiller A (2010) Potential photoactivated metallopharmaceuticals: from active molecules to r supported drugs. Chem Commun 46 (36):6651-6662. doi:10.1039/c0cc01887b 30. Crespy D, Landfester K (2009) Synthesis of
    • 25 polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer 50 (7):1616-1620. doi:10.1016/j.polymer.2009.02.003 31. Jaitely V, Sakthivel T, Magee G, Florence AT (2004) Formulation of oil in oil emulsions: potential drug reservoirs for slow release. J Drug
    • 30 Deliv Sci Technol 14 (2):113-117. doi:10.1016/S1773-2247(04)50022-9 32. Dorresteijn R, Ragg R, Rago G, Billecke N, Bonn M, Parekh SH, Battagliarin G, Peneva K, Wagner M, Klapper M, Mullen K (2013) Biocompatible Polylactide-block-Polypeptide-block-Polylactide Nanocarrier. Biomacromolecules 14 (5):1572-1577.
    • 35 doi:10.1021/bm400216r effective Pickering emulsifiers than block copolymer spheres? Soft Matter
    • 45 10 (43):8615-8626. doi:10.1039/c4sm01724b
    • 36. Thompson KL, Fielding LA, Mykhaylyk OO, Lane JA, Derry MJ,
    • Armes SP (2015) Vermicious Thermo-responsive Pickering Emulsifiers.
    • Chemical Science. doi:10.1039/C5SC00598A 37. Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by
    • 50 hydrophobized microfibrillated cellulose. J Dispersion Sci Technol 28 (6):837-844. doi:10.1080/01932690701341827
    • 38. Madivala B, Fransaer J, Vermant J (2009) Self-Assembly and
    • Rheology of Ellipsoidal Particles at Interfaces. Langmuir 25 (5):2718-
    • 2728. doi:10.1021/la803554u
    • 55 39. Madivala B, Vandebril S, Fransaer J, Vermant J (2009) Exploiting particle shape in solid stabilized emulsions. Soft Matter 5 (8):1717-1727. doi:10.1039/b816680c 40. Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Capron I (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering
    • 60 emulsions. Soft Matter 9 (3):952-959. doi:10.1039/c2sm26472b
    • 41. Hawker CJ (1994) Molecular-weight control by a living free-radical
    • polymerization process. J Am Chem Soc 116 (24):11185-11186.
    • doi:10.1021/ja00103a055 42. Wang JS, Matyjaszewski K (1995) Controlled living radical 65 polymerization - halogen atom-transfer radical polymerization promoted
    • Rby a CU(I)CU(II) redox process. Macromolecules 28 (23):7901-7910. doi:10.1021/ma00127a042
    • 45. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living
    • radical polymerization. Chem Rev 101 (12):3689-3745.
    • doi:10.1021/cr9901182
    • 33. Noble PF, Cayre OJ, Alargova RG, Velev OD, Paunov VN (2004)
    • J Am Chem Soc 126 (26):8092-8093. doi:10.1021/ja047808u 46. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical
    • 80 polymerization: Features, developments, and perspectives. Prog Polym Sci 32 (1):93-146. doi:10.1016/j.progpolymsci.2006.11.002 34. Alargova RG, Warhadpande DS, Paunov VN, Velev OD (2004) Foam
    • 40 superstabilization by polymer microrods. Langmuir 20 (24):10371-10374. doi:10.1021/la048647a
    • 35. Thompson KL, Mable CJ, Cockram A, Warren NJ, Cunningham VJ,
    • Jones ER, Verber R, Armes SP (2014) Are block copolymer worms more 47. Qiu J, Charleux B, Matyjaszewski K (2001) Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog Polym Sci 26 (10):2083-2134. doi:10.1016/s0079-
    • 48. An ZS, Shi QH, Tang W, Tsung CK, Hawker CJ, Stucky GD (2007)
    • nanostructured hydrogels. J Am Chem Soc 129 (46):14493-14499.
    • 5 doi:10.1021/ja0756974
    • 45 59. Fielding LA, Derry MJ, Ladmiral V, Rosselgong J, Rodrigues AM, Ratcliffe LPD, Sugihara S, Armes SP (2013) RAFT dispersion polymerization in non-polar solvents: facile production of block copolymer spheres, worms and vesicles in n-alkanes. Chemical Science 4:2081-2087. doi:10.1039/C3SC50305D
    • 49. Cunningham MF (2008) Controlled/living radical polymerization in
    • aqueous dispersed systems. Prog Polym Sci 33 (4):365-398.
    • doi:http://dx.doi.org/10.1016/j.progpolymsci.2007.11.002 50. Rieger J, Stoffelbach F, Bui C, Alaimo D, Jerome C, Charleux B
    • 10 (2008) Amphiphilic poly(ethylene oxide) macromolecular RAFT agent as a stabilizer and control agent in ab initio batch emulsion polymerization. Macromolecules 41 (12):4065-4068. doi:10.1021/ma800544v F 51. Petzetakis N, Dove AP, O'Reilly RK (2011) Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing doi:10.1039/c0sc00596g o
    • 15 block copolymers. Chemical Science 2 (5):955-960. r 52. Sugihara S, Blanazs A, Armes SP, Ryan AJ, Lewis AL (2011) P Aqueous Dispersion Polymerization: A New Paradigm for in Situ Block Copolymer Self-Assembly in Concentrated Solution. J Am Chem Soc 133 e
    • 20 (93):15707-15713. doi:10.1021/ja205887v 53. Delaittre G, Save M, Gaborieau M, Castignolles P, Rieger J, eCharleux B (2012) Synthesis by nitroxide-mediated aqueous dispersion polymerization, characterization, and physical core-crosslinking of prHand thermoresponsive dynamic diblock copolymer micelles. Polymer
    • 25 Chemistry 3 (6):1526-1538. doi:10.1039/c2py20084h
    • 54. Warren NJ, Armes SP (2014) Polymerization-Induced Self-Assembly
    • Polymerization. J Am Chem Soc 136 (29):10174-10185.
    • doi:10.1021/ja502843f
    • 30 55. Cai W, Wan W, Hong C, Huang C, Pan C-Y (2010) Morphology transitions in RAFT polymerization. Soft Matter 6 (21):5554-5561. doi:10.1039/C0SM00284D 56. Blanazs A, Madsen J, Battaglia G, Ryan AJ, Armes SP (2011) Mechanistic Insights for Block Copolymer Morphologies: How Do
    • 35 Worms Form Vesicles? J Am Chem Soc 133 (41):16581-16587. doi:10.1021/ja206301a 57. Charleux B, Delaittre G, Rieger J, D'Agosto F (2012) PolymerizationInduced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 45 (17):6753-
    • 40 6765. doi:10.1021/ma300713f
    • 58. Semsarilar M, Jones ER, Blanazs A, Armes SP (2012) Efficient
    • 24 (25):3378-3382. doi:10.1002/adma.201200925
    • 50 60. Blanazs A, Armes SP, Ryan AJ (2009) Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol Rapid Commun 30 (4-5):267-277. doi:10.1002/marc.200800713 61. Monteiro MJ, Cunningham MF (2012) Polymer Nanoparticles via
    • 55 Living Radical Polymerization in Aqueous Dispersions: Design and Applications. Macromolecules 45 (12):4939-4957. doi:10.1021/ma300170c 62. Wan W-M, Pan C-Y (2010) One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly
    • 60 and re-organization. Polymer Chemistry 1 (9):1475-1484. doi:10.1039/C0PY00124D
    • 63. Huang C-Q, Pan C-Y (2010) Direct preparation of vesicles from one-
    • pot RAFT dispersion polymerization. Polymer 51 (22):5115-5121.
    • doi:10.1016/j.polymer.2010.08.056
    • 65 64. Jones ER, Semsarilar M, Blanazs A, Armes SP (2012) Efficient Synthesis of Amine-Functional Diblock Copolymer Nanoparticles via RAFT Dispersion Polymerization of Benzyl Methacrylate in Alcoholic Media. Macromolecules 45 (12):5091-5098. doi:10.1021/ma300898e
    • R 65. Gonzato C, Semsarilar M, Jones ER, Li F, Krooshof GJP, Wyman P, e 70 Mykhaylyk OO, Tuinier R, Armes SP (2014) Rational Synthesis of LowPolydispersity Block Copolymer Vesicles in Concentrated Solution via Polymverization-Induced Self-Assembly. J Am Chem Soc 136 (31):11100- 11106. doi:10.1021/ja505406s i 66. Houillot L, eBui C, Save M, Charleux B, Farcet C, Moire C, Raust JA, w 75 Rodriguez I (2007) Synthesis of well-defined polyacrylate particle dispersions in organic medium using simultaneous RAFT polymerization and self-assembly of block copolymers. A strong influence of the selected thiocarbonylthio chain transfer agent. Macromolecules 40 (18):6500- 6509. doi:10.1021/ma0703249
    • 80 67. Fielding LA, Lane JA, Derry MJ, Mykhaylyk OO, Armes SP (2014) Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents. J Am Chem Soc 136 (15):5790-5798. doi:10.1021/ja501756h 68. Bernard J, Save M, Arathoon B, Charleux B (2008) Preparation of a xanthate-terminated dextran by click chemistry: Application to the
    • 85 synthesis of polysaccharide-coated nanoparticles via surfactant-free ab initio emulsion polymerization of vinyl acetate. J Polym Sci, Part A: Polym Chem 46 (8):2845-2857. doi:10.1002/pola.22618 69. Rieger J, Osterwinter G, Bui CO, Stoffelbach F, Charleux B (2009) Surfactant-Free Controlled/Living Radical Emulsion (Co)polymerization
    • 90 of n-Butyl Acrylate and Methyl Methacrylate via RAFT Using
    • Page 11 of 12 75. Sun JT, Hong CY, Pan CY (2013) Recent advances in RAFT
    • 30 dispersion polymerization for preparation of block copolymer aggregates. Polymer Chemistry 4 (4):873-881. doi:10.1039/c2py20612a
    • 76. Zong MM, Thurecht KJ, Howdle SM (2008) Dispersion
    • polymerisation in supercritical CO(2) using macro-RAFT agents. Chem
    • Commun (45):5942-5944. doi:10.1039/b812827h
    • 35 77. Boissé S, Rieger J, Belal K, Di-Cicco A, Beaunier P, Li M-H, Charleux B (2010) Amphiphilic block copolymer nano-fibers via RAFTmediated polymerization in aqueous dispersed system. Chem Commun 46 (11):1950-1952. doi:10.1039/B923667H 78. Zhang X, Boissé S, Bui C, Albouy P-A, Brulet A, Li M-H, Rieger J,
    • 40 Charleux B (2012) Amphiphilic liquid-crystal block copolymer nanofibers via RAFT-mediated dispersion polymerization. Soft Matter 8 (4):1130-1141. doi:10.1039/C1SM06598J 79. Semsarilar M, Ladmiral V, Blanazs A, Armes SP (2012) Anionic Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion
    • 45 Polymerization. Langmuir 28 (1):914-922. doi:10.1021/la203991y
    • 80. Zhang X, Rieger J, Charleux B (2012) Effect of the solvent
    • Chemistry 3:1502-1509. doi:10.1039/C2PY20071F
    • 50 81. Thompson KL, Lane JA, Derry MJ, Armes SP (2015) Non-aqueous Isorefractive Pickering Emulsions. Langmuir 31 (15):4373-4376. doi:10.1021/acs.langmuir.5b00630 82. Kalashnikova I, Bizot H, Cathala B, Capron I (2011) New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals. Langmuir 27
    • 55 (12):7471-7479. doi:10.1021/la200971f
    • 83. Cerce T, Peter S, Weidner E (2005) Biodiesel-transesterification of
    • 44 (25):9535-9541. doi:10.1021/ie050252e
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | PISA

Cite this article