Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cunniff, Jennifer; Charles, Michael; Jones, Glynis; Osborne, Colin P. (2016)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Original Articles

Classified by OpenAIRE into

mesheuropmc: fungi, circulatory and respiratory physiology, respiratory tract diseases, respiratory system, food and beverages
BACKGROUND AND AIMS: The reduction of plant productivity by low atmospheric CO2 partial pressure (pCO2) during the last glacial period is proposed as a limiting factor for the establishment of agriculture. Supporting this hypothesis, previous work has shown that glacial pCO2 limits biomass in the wild progenitors of C3 and C4 founder crops, in part due to the direct effects of glacial pCO2 on photosynthesis. Here, we investigate the indirect role of pCO2 mediated via water status, hypothesizing that faster soil water depletion at glacial (18 Pa) compared to post-glacial (27 Pa) pCO2, due to greater stomatal conductance, feeds back to limit photosynthesis during drying cycles. METHODS: We grew four wild progenitors of C3 and C4 crops at glacial and post-glacial pCO2 and investigated physiological changes in gas exchange, canopy transpiration, soil water content and water potential between regular watering events. Growth parameters including leaf area were measured. KEY RESULTS: Initial transpiration rates were higher at glacial pCO2 due to greater stomatal conductance. However, stomatal conductance declined more rapidly over the soil drying cycle in glacial pCO2 and was associated with decreased intercellular pCO2 and lower photosynthesis. Soil water content was similar between pCO2 levels as larger leaf areas at post-glacial pCO2 offset the slower depletion of water. Instead the feedback could be linked to reduced plant water status. Particularly in the C4 plants, soil-leaf water potential gradients were greater at 18 Pa compared with 27 Pa pCO2, suggesting an increased ratio of leaf evaporative demand to supply. CONCLUSIONS: Reduced plant water status appeared to cause a negative feedback on stomatal aperture in plants at glacial pCO2, thereby reducing photosynthesis. The effects were stronger in C4 species, providing a mechanism for reduced biomass at 18 Pa. These results have added significance when set against the drier climate of the glacial period.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article