Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wagstaff, Jane L.; Howard, Mark J.; Williamson, Richard A. (2010)
Languages: English
Types: Article
Subjects: QD, QH301
The integrin alphavbeta6 is up-regulated in several cancers and has clinical potential for both tumour imaging and therapy. Peptide ligands have been developed which show good binding specificity for alphavbeta6 and provide an opportunity to study the interaction in more detail by NMR. Such studies ideally require (15)N and (13)C labelled peptides, and recombinant expression within E. coli provides a cost effective way of generating isotopically labelled proteins and peptides. In this study we have used an insoluble fusion partner (ketosteroid isomerase) to produce high yields of recombinant peptide. The insoluble nature of the fusion allowed simple product recovery by cell lysis and centrifugation, and thorough washing of the insoluble pellet to remove contaminating proteins avoided the need for nickel-affinity chromatography in denaturing conditions which is the standard procedure. The protocol described here is convenient to scale-up and requires only one chromatography step (reverse-phase HPLC) which is comparable to solid-phase synthesis.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 J. M. Breuss, J. Gallo, H. M. Delisser, I. V. Klimanskaya, H. G. Folkesson, J. F. Pittet, S. L. Nishimura, K. Aldape, D. V. Landers, W. Carpenter, N. Gillett, D. Sheppard, M. A. Matthay, S. M. Albelda, R. H. Kramer and R. Pytela, J. Cell Sci., 1995, 108, 2241-2251.
    • 2 L. Hakkinen, L. Koivisto, H. Gardner, U. Saarialho-Kere, J. M. Carroll, M. Lakso, H. Rauvala, M. Laato, J. Heino and H. Larjava, Am. J. Pathol., 2004, 164, 229-242.
    • 3 G. J. Thomas, M. L. Nystrom and J. F. Marshall, J. Oral Pathol. Med., 2006, 35, 1-10.
    • 4 J. S. Munger, X. Z. Huang, H. Kawakatsu, M. J. D. Griffiths, S. L. Dalton, J. F. Wu, J. F. Pittet, N. Kaminski, C. Garat, M. A. Matthay, D. B. Rifkin and D. Sheppard, Cell (Cambridge, Mass.), 1999, 96, 319-328.
    • 5 J. P. Annes, D. B. Rifkin and J. S. Munger, FEBS Lett., 2002, 511, 65-68.
    • 6 T. Jackson, D. Sheppard, M. Denyer, W. Blakemore and A. M. Q. King, J. Virol., 2000, 74, 4949-4956.
    • 7 S. Kraft, B. Diefenbach, R. Mehta, A. Jonczyk, G. A. Luckenbach and S. L. Goodman, J. Biol. Chem., 1999, 274, 1979-1985.
    • 8 M. G. Mateu, M. L. Valero, D. Andreu and E. Domingo, J. Biol. Chem., 1996, 271, 12814-12819.
    • 9 D. DiCara, C. Rapisarda, J. L. Sutcliffe, S. M. Violette, P. H. Weinreb, I. R. Hart, M. J. Howard and J. F. Marshall, J. Biol. Chem., 2007, 282, 9657-9665.
    • 10 J. L. Wagstaff, S. Vallath, J. F. Marshall, R. A. Williamson and M. J. Howard, Chem. Commun., 2010, DOI: 10.1039/C0CC01846E.
    • 11 S.-H. Shen, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 4627-4631.
    • 12 B. W. Koenig, W. Rogowski and J. M. Louis, J. Biomol. NMR, 2003, 26, 193-202.
    • 13 H. L. Lilie, E. Schwatz and R. Rudolph, Curr. Opin. Biotechnol., 1998, 9, 497-501.
    • 14 E. De Bernardez Clark, Curr. Opin. Biotechnol., 2001, 12, 202-207.
    • 15 A. Majerla, J. Kidric and R. Jerala, J. Biomol. NMR, 2000, 18, 145-151.
    • 16 I. Cˇ ip a´kov a´, J. Gasˇ per ı´k and E. Hostinoz a´, Protein Expression Purif., 2006, 45, 269-274.
    • 17 A. Kuliopulos and C. T. Walsh, J. Am. Chem. Soc., 1994, 116, 4599-4607.
    • 18 M. J. Osbourne, Z. Su, V. Sridaran and F. Ni, J. Biomol. NMR, 2003, 26, 317-326.
    • 19 D. H. Jones, E. H. Ball, S. Sharpe, K. R. Barber and C. W. Grant, Biochem. J., 2000, 39, 1870-1878.
    • 20 M. Sharon, M. Gorlash, R. Levy, Y. Hayek and J. Anglister, Protein Expression Purif., 2002, 24, 374-383.
    • 21 I. T. Yonemoto, M. R. Wood, W. E. Balch and J. W. Kelly, Protein Sci., 2009, 18, 1978-1986.
    • 22 F. Marston, Biochem. J., 1986, 240, 1-12.
    • 23 R. A. Williamson, D. Natalia, C. K. Gee, G. Murphy, M. D. Carr and R. B. Freedman, Eur. J. Biochem., 1996, 241, 476-483.
    • 24 D. R. Goodlett, F. B. Armstrong, R. J. Creech and R. B. van Breeman, Anal. Biochem., 1990, 186, 116-120.
    • 25 H. I. Alanen, R. A. Williamson, M. J. Howard, F. S. Hatahet, K. E. H. Salo, A. Kauppila, S. Kellokumpu and L. W. Ruddock, J. Biol. Chem., 2006, 281, 33727-33738.
    • 26 M. Piotto, V. Saudek and V. Sklenar, J. Biomol. NMR, 1992, 2, 661-665.
    • 27 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax, J. Biomol. NMR, 1995, 6, 277-293.
    • 28 W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon, M. Llinas, E. L. Ulrich, J. L. Markley, J. Ionides and E. D. Laue, Proteins, 2005, 59, 687-696.
    • 29 B. M. Hartmann, E. Kaar, R. J. Falconer, B. Zeng and A. P. J. Middleberg, J. Biotechnol., 2008, 135, 85-91.
    • 30 J. M. Riley, A. Aggeli, R. J. Koopmans and M. J. McPherson, Biotechnol. Bioeng., 2009, 103, 241-251.
    • 31 R. E. Offord, Biochem. J., 1972, 129, 499-501.
    • 32 S. Sharpe, W.-M. Yau and R. Tycko, Protein Expression Purif., 2005, 42, 200-210.
    • 33 T.-J. Park, J.-S. Kim, S.-S. Choi and Y. Kim, Protein Expression Purif., 2009, 65, 23-29.
    • 34 P. T. F. Williamson, J. F. Roth, T. Haddingham and A. Watts, Protein Expression Purif., 2000, 19, 271-275.
    • 35 A. E. Meekhof and S. M. V. Freund, J. Mol. Biol., 1999, 286, 579-592.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Download from

Funded by projects

Cite this article