LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cui, X-Y; Liu, J; Georgiev, PA; Morrison, I; Ross, DK; Roberts, M; Anderson, KA; Telling, M; Fort, D; UNIVERSITY OF SALFORD; RUTHERFORD APPLETON LABORATORY; UNIVERSITY OF BIRMINGHAM
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: Q, other

Classified by OpenAIRE into

arxiv: Condensed Matter::Strongly Correlated Electrons, Condensed Matter::Materials Science
This paper reports investigations into the influence of hydrogen on the magnetic properties of the YCo3-H\ud system. We report results on the magnetic structure and magnetic transitions of YCo3 using a combination of\ud neutron powder diffraction measurements and first-principles full potential augmented plane wave + local\ud orbital calculations under the generalized gradient approximation. The ferromagnetic and ferrimagnetic structures\ud are examined on an equal footing. However, we identify that, no matter which structure is used as the\ud starting point, the neutron diffraction data always refines down to the ferrimagnetic structure with the Co2\ud atoms having antiparallel spins. In the ab initio calculations, the inclusion of spin-orbit coupling is found to be\ud important in the prediction of the correct magnetic ground state. Here, the results suggest that, for zero external\ud field and sufficiently low temperatures, the spin arrangement of YCo3 is ferrimagnetic rather than ferromagnetic\ud as previously believed. The fixed spin moment calculation technique has been employed to understand\ud the two successive field-induced magnetic transitions observed in previous magnetization measurements under\ud increasing ultrahigh magnetic fields. We find that the magnetic transitions start from the ferrimagnetic phase\ud �0.61�B/Co� and terminate with the ferromagnetic phase �1.16�B/Co�, while the spin on the Co2 atoms\ud progressively changes from antiparallel ferrimagnetic to paramagnetic and then to ferromagnetic. Our neutron\ud diffraction measurements, ab initio calculations, and the high field magnetization measurements are thus\ud entirely self-consistent.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 M. Yamaguchi, H. Ikeda, T. Ohta, T. Goto, and T. Katayama, Solid State Commun. 53, 383 1985 .
    • 2 M. I. Bartashevich, H. A. Katori, T. Goto, I. Yamamoto, and Y. Yamaguchi, Physica B 210, 135 1994 .
    • 3 J. Liu, D. P. Broom, P. A. L. Georgiev, and D. K. Ross, J. Alloys Compd. 356-357, 174 2003 .
    • 4 X. Y. Cui, J. Liu, I. Morrison, and D. K. Ross, J. Alloys Compd. 404-406, 136 2005 .
    • 5 J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, Nature London 380, 231 1996 .
    • 6 J. Liu, X. Y. Cui, P. A. Georgiev, I. Morrison, D. K. Ross, M. A. Roberts, K. A. Andersen, M. Telling, and D. Fort, Phys. Rev. B 76, 184444 2007 .
    • 7 R. Lemaire, Cobalt Engl. Ed. 33, 201 1966 .
    • 8 E. Kren, J. Schweizer, and F. Tasset, Phys. Rev. 186, 479 1969 .
    • 9 J. Inoue and M. Shimizu, J. Phys. F: Met. Phys. 15, 1511 1985 .
    • 10 R. Coehoorn, J. Magn. Magn. Mater. 99, 55 1991 .
    • 11 M. Yamaguchi and S. Asano, J. Magn. Magn. Mater. 168, 161 1997 .
    • 12 M. I. Bartashevich, T. Goto, M. Yamaguchi, and I. Yamamoto, Physica B 294-295, 186 2001 .
    • 13 V. L. Moruzzi, A. R. Williams, A. P. Malozemoff, and R. J. Gambino, Phys. Rev. B 28, 5511 1983 .
    • 14 K. Schwartz and P. Mohn, J. Phys. F: Met. Phys. 14, L129 1984 .
    • 15 For examples, H. J. F. Jansen, J. Appl. Phys. 81, 3866 1997 ; H. Yamada, K. Terao, H. Ohta, T. Arioka, and E. Kulatov, J. Phys.: Condens. Matter 11, L309 1999 ; S. L. Qiu, Phys. Rev. B 60, 56 1999 ; J. H. Lee, Y. C. Hsue, and A. J. Freeman, ibid. 73, 172405 2006 ; X. Y. Cui, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. Lett. 97, 016402 2006 .
    • 16 A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report No. LAUR 86-748, 1994 unpublished .
    • 17 M. I. Bartashevich, T. Goto, M. Yamaguchi, I. Yamamoto, and A. V. Andreev, Solid State Commun. 82, 201 1992 .
    • 18 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, Vienna University of Technology, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, revised edition 2001 .
    • 19 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 1964 ; W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 1965 .
    • 20 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 1996 .
    • 21 D. Singh, Phys. Rev. B 43, 6388 1991 .
    • 22 J. Kunes, P. Novak, M. Divis, and P. M. Oppeneer, Phys. Rev. B 63, 205111 2001 .
    • 23 V. F. Sears, Neutron News 3 3 , 26 1992 .
    • 24 D. Givord, J. Laforest, and R. Lemaire, Physica B & C 86-88, 204 1977 .
    • 25 X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, N. Newman, and C. Stampfl, Phys. Rev. Lett. 95, 256404 2005 .
    • 26 X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. B 75, 155205 2007 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article