LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Abdulghani, A; Naire, S (2017)
Publisher: Elsevier BV
Languages: English
Types: Article
Subjects: QA

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_COMPUTERGRAPHICS
arxiv: Physics::Fluid Dynamics, Mathematics::Numerical Analysis
We present an adaptive moving mesh method for the numerical solution of thin liquid film spreading flows with surface tension. We follow the r-adaptive moving mesh technique which utilises a mesh density function and moving mesh partial differential equations (MMPDEs) to adapt and move the mesh coupled to the PDE(s) describing the thin film flow problem. Numerical experiments are performed on two one dimensional thin film flow equations to test the accuracy and efficiency of the method. This technique accurately resolves the multiple one-dimensional structures observed in these test problems. Moreover, it reduces the computational effort in comparison to the numerical solution using the finite difference scheme on a fixed uniform mesh.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article