LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Miller, Jimmie Andrew
Languages: English
Types: Doctoral thesis
Subjects: TK, QA76
Recent years have seen exponential increase in memory capacity for computer data storage. Increased bit density has been produced by decreasing feature sizes in microelectronic fabrication. As minimum microelectronic feature sizes are realized, new methods are being investigated to continue the increase in recording bit density.\ud This report examines features which are necessary to produce an electron-tunneling based memory which is postulated to increase the data density by a factor of 105-106 over current manufactured memories. A description is given for combining tunneling microscopy with memory technology to achieve this high density memory. Experiments using a tunneling tip to produce nanometer scale features on a surface are recounted. The repeatability and durability of the produced features are investigated with a summary of these aspects included for various materials reported in the literature. Some necessary mechanical and electrical design criteria for a tunneling memory are obtained. Observed and reported inconsistency in nanometer lithography are attributed to nonpredictable tunneling currents and resulting tip-sample separations. Experimental and theoretical work scrutinizing tunneling currents as a function of tip-sample displacement is included. Other factors affecting the practicality of a tunneling based memory are also incorporated.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • W., and Pease R. F. W., "Imaging and modification of polymers by scanning tunneling and atomic force microscopy", J. Appl. Phys. 64, 1178 (1988).
    • Lett. 55, 1727 (1989).
    • Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., "Surface studies by scanning tunneling microscopy", Phys. Rev. Lett. 49, 57 (1982).
    • Binnig, G., and Rorher, H., "Scanning tunneling microscopy, and atomic probe", Scanning Electron Microscopy/1983/III 1079 (1983).
    • Lett. 1, 36 (1986a).
    • Binnig, G., Garcia, N., Rohrer, H., Soler, J. M., and Flores, F., "Electron-metal-surface interaction with vacuum tunneling: observation of the image force", Phys. Rev. B 30(8), 4816 (1984).
    • Binnig, G., and Rohrer, H., "Scanning tunneling microscopy", IBM J. Res. Dev. 30, 355 (1986b).
    • Bocko, Mark F., Stephenson, Kendall A., and Koch, Roger H., "Vacuum Tunneling Probe: A Reduced-Back-Action Transducer", Phys. Rev. Lett. 61, 726 (1988).
    • Bocko, Mark F., "The scanning tunneling microscope as a high gain, low noise displacement sensor", Rev. Sci. Instrum. 61, 3763 (1990).
    • Bryant, A., Smith D. P. E., Binnig G., Harrison, W. A., and Quate C. F., "Anomalous distance dependance in scanning tunneling microscopy", Appl. Phys. Lett. 49, 936 (1986).
    • Bugg, C. D., and King, P. J., "Scanning capacitance microscopy", J. Phys. E: Sci. Instrum. 21 147 (1988).
    • Camras, Marvin, Magnetic Recording Handbook, (Rienhold, New York, 1988).
    • Casillas, Norberto, Snyder, Shelly R., and White, Henry S., "STM Fabrication of Platinum Disks of Nanometer Dimensions", J. Electrochem. Soc. 138, 641 (1991).
    • Chen, C. Julian, "Origin of atomic resolution on metal surfaces in scanning tunneling microscopy", Phys. Rev. Lett. 65(4), 448-51 (1990).
    • Chetwynd, Derek G., and Smith, Stuart T., "High precision surface profilometry: from stylus to STM", in From Instrumentation to Nanotechnology, Gardner, J. W., and Hingle, H. T. eds. (Gordon and Breach, Philadelphia 1991).
    • Colton, R. J., Baker, S. M., Driscoll, R. J., Youngquist, M. G., Baldeschwieler, J. D., Kaiser, W. J., "Imaging graphite in air by scanning tunneling microscopy: Role of the tip", J. Vac. Sci. Technol. A 6, 349 (1988).
    • Coombs, J. H., and Pethica J. B., "Properties of vacuum tunneling currents: anomalous barrier heights", IBM J. Res. Dev. 30(5), 455 (1986).
    • Craston, Derek H., Lin, Charles W., and Bard, Allen J., "High Resolution Deposition of Silver in Nafion Films with the scanning tunneling microscope", J. Electrochem. Soc. 785 (Mar 1988).
    • 56, 2001 (1990a).
    • B 9, 1384 (1991a).
    • Dagata, J. A., Tseng, W., Bennet, J., Evans C. J., Schneir, J., and Harary, H. H., "Selective-area epitaxial growth of gallium arsenide on silicon substrates patterned using a scanning tunneling microscope operating in air", Appl. Phys. Lett. 57, 2437 (1990b).
    • Dagata, J. A., Tseng, W., Bennet, J. Schneir, J., and Harary, H. H., "Nanolithography on III-V semiconductor surfaces using a scanning tunneling microscope operating in air", J. Appl. Phys. 70, 3661 (1991b).
    • Technol. A 10(4) 2105-13 (1992).
    • 62(14), 1629 (1993a).
    • Day, H. C., and Allee, D. R., " Selective area oxidation of silicon with a scanning force microscope", Appl. Phys. Lett. 62(21), 2691 (1993b).
    • Doyen, G., Koetter, E., Vigneron, J. P., and Scheffler, M., "Theory of scanning tunneling microscopy", Appl. Phys. A 51, 281 (1990).
    • Drexler, K. Eric, Engines of Creation, (Doubleday. New York, 1986).
    • Dujardin, G., Walkup, R. E., Avouris, P., "Dissociation of Individual Molecules with Electrons from the Tip of a Scanning Tunneling Microscope", Science 255, 1232 (1992).
    • Ehrichs, E. E., and de Lozanne, A. L., "Etching of silicon (111) with the scanning tunneling microscope", J. Vac. Sci. Technol. A 8, 571 (1990).
    • Ehrichs, E. E., Yoon, S., and de Lozanne, A. L., "Direct writing of 10 nm features with the scanning tunneling microscope", Appl. Phys. Lett. 53, 1187 (1988).
    • Eigler, D. M., Lutz, C. P., and Rudge, W. E., "An atomic switch realized with the scanning tunneling microscope", Nature 352, 600 (1991).
    • Eigler, D. M., and Schweizer, E. K., "Positioning single atoms with a scanning tunneling microscope", Nature 344, 524 (1990).
    • Eisberg, Robert and Resnick, Robert, Quantum physics of atoms, molecules, solids, nuclei, and particles, (Wiley & Sons, New York, 1974).
    • Emch, R., Nogami, J., Dovek, M. M., Lang, C. A., and Quate, C. F., "Characterization of gold surfaces for use as substrates in scanning tunneling microscopy studies", J. Appl. Phys. 65, 79 (1989).
    • Feynman, Richard P., "There's plenty of room at the bottom" in Miniaturization, Horace D. Gilbert, ed., (Reinhold Publishing, New York, 1961).
    • Foster, J. S., Frommer, J. E., and Arnett, P. C., "Molecular manipulation using a tunnelling microscope", Nature 331, 324 (1988).
    • Gane, M., and Cox, J. M., "The microhardness of metals at very low loads", Phil. Mag. 881-891 (1970a).
    • London A317, 367 (1970b).
    • Heinzelmann, H., Anselmetti, D., Weisendanger, R., G├╝ntherodt, H.-J., Kadis, E., and Wisard, A., "Topography and local modification of the HoBa2Cu3O7-x (001) surface using scanning tunneling microscopy", Appl. Phys. Lett. 53, 2447 (1988).
    • Lang, N. D., "Apparent barrier height in scanning tunneling microscopy", Phys. Rev. B 37(17) 10395 (1988).
    • Leung, On Man, and Goh, Cynthia, J., "Orientational Ordering of Polymers by Atomic Force Microscope Tip-Surface Interaction", Science 255, 64 (1992).
    • Li, Wenjie, Virtanen, Joma A., Penner, Reginald, M., "Nanometer-scale electrochemical deposition of silver on graphite using a scanning tunneling microscope", Appl. Phys. Lett. 60, 1181 (1992).
    • Li, Y. Z., Vazquez, L., Piner, R., Andres, R. P., and Reifenberger, R., "Writing nanometer-scale symbols in gold using the scanning tunneling microscope", Appl. Phys. Lett. 54, 1424 (1989).
    • Soc. 134, 1038 (1987).
    • Lyo, In-Whan, and Avouris, Phaedon, "Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM", Science 253, 174 (1991).
    • Rev. B 34, 9015 (1986).
    • Mamin, H.-J., Geunthner, P. H., and Rugar, D., "Atomic Emission from a Gold Scanning-TunnelingMicroscope Tip", Phys. Rev. Lett. 65, 2418 (1990).
    • Mamin, H.J., Chiang, S., Birk, H., Geunthner, P.H., and Rugar, D., "Gold deposition from a scanning tunneling microscope tip", J. Vac. Sci. Technol. B 9, 1398, (1991).
    • Mamin, H. J., Birk, H., Wimmer, P., and Ruger, D., "High speed STM: principles and applications", J. Appl. Phys. 75(1), 167 (1994).
    • Marrian, Christie R. K., Dobisz, Elizabeth A., and Peckerar, Martin C., "Nanostructure Patterning" Proc. IEEE 79, 1149 (1991b).
    • Matey, J. R., and Blanc, J., "Scanning capacitance microscopy", J. Appl. Phys. 57 1437 (1985).
    • McBride, S.E., and Wetsel Jr., G. C., "Nanometer-scale features produced by electric-field emission", Appl. Phys. Lett. 59, 3056 (1991).
    • Sci. Technol. B 4, 86 (1986).
    • McCord, M. A., and Pease, R. F. W., "Scanning tunneling microscope as a micromechanical tool", Appl. Phys. Lett. 50, 569 (1987).
    • McCord, M. A., and Pease, R. F. W., "Lift-off metalization using poly(methylmethacrylate) exposed with a scanning tunneling microscope" J. Vac. Sci. Technol. B 6, 293 (1988).
    • Pan, X., Allee, D. R., Broers, A. N., Tang, Y. S., and Wilkinson C. W., "Nanometer scale pattern replication using electron beam direct patterned SiO2 as the etching mask", Appl. Phys. Lett. 59, 3157 (1991).
    • Young, Russell, Ward, John, and Scire, Frederic, "The topografiner: An instrument for measuring surface microtopography", Rev. Sci. Instrum. 43, 999 (1972).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article