LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guan, Yu; Li, Chang-Tsun; Choudhury, Sruti Das (2013)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Unknown
Subjects: QA76

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, ComputingMethodologies_PATTERNRECOGNITION
In this paper, we propose a gait recognition method for extremely low frame-rate videos. Different from the popular temporal reconstruction-based methods, the proposed method uses the average gait over the whole sequence as input feature template. Assuming the effect caused by extremely low frame-rate or large gait fluctuations are intra-class variations that the gallery data fails to capture, we build a general model based on random subspace method. More specifically, a number of weak classifiers are combined to reduce the generalization errors. We evaluate our method on the OU-ISIR-D dataset with large/small gait fluctuations, and very competitive results are achieved when both the probe and gallery are extremely low frame-rate gait sequences (e.g., 1 fps).

Share - Bookmark

Cite this article