LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Antao, Tiago; Hastings, Ian (2012)
Publisher: BioMed Central
Journal: Malaria Journal
Languages: English
Types: Article
Subjects: qx_135, Treatment, Drugs, Adherence, qv_256, Infectious Diseases, wa_395, wc_765, Malaria, Resistance, Research, wc_750, RC955-962, RC109-216, Plasmodium falciparum, Infectious and parasitic diseases, Arctic medicine. Tropical medicine, Parasitology, Policy

Abstract

Background

Anti-malarial drugs are constantly exposed to the threat of evolving drug resistance so good stewardship of existing therapy is an essential component of public health policy. However, the widespread availability of numerous different drugs through informal providers could undermine official drug deployment policies. A policy of multiple first-line therapy (MFT) is compared with the conventional policy of sequential drug deployment, i.e., where one drug is used until resistance evolves and then replaced by the next drug in the sequence.

Methods

Population genetic models of drug resistance are used to make the comparison; this methodology explicitly tracks the genetics of drug resistance (including, importantly, recombination in the sexual stage, intrahost dynamics, and direction of linkage disequilibrium).

Results

A policy of MFT outlasts sequential application providing drug usages are low to moderate, and appears not to drive widespread multi-drug resistance. Inadequate dosing is an even more potent driver of drug resistance than the MFT/sequential policy decision.

Conclusions

The provision of MFT as a deliberate policy can be encouraged provided overall treatment rates are low or moderate (less than around half of malaria infections are treated) and the ad hoc provision of MFT through the private sector may be tolerated. This must be fully supported by education to ensure people take adequate doses of each of the drugs.

Share - Bookmark

Funded by projects

  • FCT | SFRH/BD/30834/2006
  • WT

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok