LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haigh, Paul (2014)
Languages: English
Types: Doctoral thesis
Subjects: H600
This thesis proposes to marry two separate technologies together. The first technology is that of visible light communications (VLC), and the second is small molecule and polymer organic photonic devices. These two technologies both offer outstanding potential in their respective fields of information communications and optoelectronics, with both being proposed as two of the most important technologies about to emerge in the next decades by their respective research communities. As such, it is imperative to investigate and analyse the performance of organic photonic devices in the context of VLC broadcasting networks. There have been no experimental results in the literature reporting on organic-VLC systems until the work proposed in this thesis and therefore the focus is on improving transmission speeds.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 Introduction to Visible Light Communications . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Research Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Original Contributions to Knowledge . . . . . . . . . . . . . . . . . . . . . 14 1.5 List of Publications and Awards . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.1 Peer Reviewed Journal Papers . . . . . . . . . . . . . . . . . . . . 16 1.5.2 Peer Reviewed Conference Papers . . . . . . . . . . . . . . . . . . 17 1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
    • 2 Principles of Organic Photonic Devices 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Review of Conventional Semiconductors . . . . . . . . . . . . . . . . . . . 21 2.3 Photon Generation and Absorption . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Radiative Recombination of Electrons and Holes . . . . . . . . . . 24 2.3.2 Equivalent Model of the Light Emitting Diode . . . . . . . . . . . 25 2.4 Photodetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Organic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.1 Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 The Bulk Heterojunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
    • 3 Principles of Visible Light Communications 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Modulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 M-ary Pulse Amplitude Modulation . . . . . . . . . . . . . . . . . 52 3.2.2 L-ary Pulse Position Modulation . . . . . . . . . . . . . . . . . . . 58 3.2.3 Summary of Modulation Schemes . . . . . . . . . . . . . . . . . . 64 3.3 Equalization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.1 Equalization as an Information Theory Problem . . . . . . . . . . . 65 3.3.2 RC Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.3 Zero-Forcing Equalizer . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.4 Adaptive Linear Equalizer . . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 Decision Feedback Equalizer . . . . . . . . . . . . . . . . . . . . . 79 3.3.6 Equalization as a Classification Problem . . . . . . . . . . . . . . . 79 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
    • 4 Visible Light Communications with Organic Light Emitting Diodes 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Communications Performance . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 On-Off Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.2 Pulse Position Modulation . . . . . . . . . . . . . . . . . . . . . . 101 4.3 Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
    • 6 Visible Light Communications with All Organic Optoelectronic Components 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 Organic Optoelectronic Devices . . . . . . . . . . . . . . . . . . . . . . . 131 6.3 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
    • 7 Visible Light Communications with Polymer Light-Emitting Diodes 139 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.2 Production and Characterization of the PLEDs . . . . . . . . . . . . . . . . 140 7.3 Experimental Test Setup and LMS Equalizer . . . . . . . . . . . . . . . . . 145 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
    • [6] A. K. Jain, M. Jianchang, and K. M. Mohiuddin, “Artificial neural networks: a tutorial,” Computer, vol. 29, no. 3, pp. 31-44, 1996. 0018-9162.
    • [7] G. M. Lazzerini, F. Di Stasio, C. Flechon, D. J. Caruana, and F. Cacialli, “Low-temperature treatment of semiconducting interlayers for high-efficiency lightemitting diodes based on a green-emitting polyfluorene derivative,” Applied Physics Letters, vol. 99, no. 24, pp. -, 2011.
    • [8] J.-S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, “Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes,” Applied Physics Letters, vol. 87, no. 2, pp. -, 2005.
    • [9] N. Johansson, F. Cacialli, K. Z. Xing, G. Beamson, D. T. Clark, R. H. Friend, and W. R. Salaneck, “A study of the ITO-on-PPV interface using photoelectron spectroscopy,” Synthetic Metals, vol. 92, no. 3, pp. 207-211, 1998.
    • [10] O. Fenwick, S. Fusco, T. N. Baig, F. Di Stasio, T. T. Steckler, P. Henriksson, C. Flé- chon, M. R. Andersson, and F. Cacialli, “Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene,” APL Materials, vol. 1, no. 3, pp. -, 2013.
    • [11] B. W. D'Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov, and M. E. Thompson, “Relationship between the ionization and oxidation potentials of molecular organic semiconductors,” Organic Electronics, vol. 6, no. 1, pp. 11-20, 2005.
    • [12] T. M. Brown and F. Cacialli, “Contact optimization in polymer light-emitting diodes,” Journal of Polymer Science Part B: Polymer Physics, vol. 41, no. 21, pp. 2649-2664, 2003.
    • [13] D. Mange and M. Tomassini, Bio-inspired computing machines: towards novel computational architectures. PPUR presses polytechniques, 1998.
    • [14] R. M. R. Ltd, “Uk radio frequency allocations chart,” 2013.
    • [15] Y. Ito, “A new paradigm in optical communications and networks,” IEEE Communications Magazine, vol. 51, no. 3, pp. 24-26, 2013.
    • [16] L. Hanzo, H. Haas, S. Imre, D. O'Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: From 3g/4g to optical and quantum wireless,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1853-1888, 2012.
    • [17] J. Kahn and J. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265-298, 1997.
    • [18] J. R. Barry, Wireless Infrared Communications. Boston: Kluwer Academic Publishers, 1994.
    • [19] F. K. Yam and Z. Hassan, “Innovative advances in led technology,” Microelectronics Journal, vol. 36, no. 2, pp. 129-137, 2005.
    • [20] R. D. Dupuis and M. R. Krames, “History, development, and applications of highbrightness visible light-emitting diodes,” Lightwave Technology, Journal of, vol. 26, no. 9, pp. 1154-1171, 2008.
    • [21] A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and highefficiency ingan-based light emitters,” Electron Devices, IEEE Transactions on, vol. 57, no. 1, pp. 79-87, 2010.
    • [22] Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored led for wireless home links,” in Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on, vol. 2, pp. 1325-1329 vol.2.
    • [23] Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white leds as lighting,” in Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE International Symposium on, vol. 2, pp. F-81-F85 vol.2.
    • [24] Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “A basic study of optical ofdm system for indoor visible communication utilizing plural white leds as lighting,” Proceeding of 8th International Symposium on Microwave and Optical Technology (ISMOT), pp. 303-306, 2001.
    • [25] K. Fan, T. Komine, Y. Tanaka, and M. Nakagawa, “The effect of reflection on indoor visible-light communication system utilizing white leds,” in Wireless Personal Multimedia Communications, 2002. The 5th International Symposium on, vol. 2, pp. 611- 615 vol.2.
    • [26] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” Consumer Electronics, IEEE Transactions on, vol. 50, no. 1, pp. 100-107, 2004.
    • [28] K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technology Letters, vol. 23, no. 16, pp. 1136-1138, 2011.
    • [29] B. Bo, X. Zhengyuan, and F. Yangyu, “Joint led dimming and high capacity visible light communication by overlapping ppm,” in Wireless and Optical Communications Conference (WOCC), 2010 19th Annual, pp. 1-5.
    • [30] K. Jae Kyun, “Inverse source coding for dimming in visible light communications using nrz-ook on reliable links,” IEEE Photonics Technology Letters, vol. 22, no. 19, pp. 1455-1457, 2010.
    • [31] G. Ntogari, T. Kamalakis, J. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” IEEE/OSA Journal of Optical Communications and Networking, vol. 3, no. 1, pp. 56-65, 2011.
    • [32] C. Joon-ho, C. Eun-byeol, K. Tae-Gyu, and L. Chung Ghiu, “Pulse width modulation based signal format for visible light communications,” in OptoeElectronics and Communications Conference (OECC), 2010 15th, pp. 276-277.
    • [33] J. Hyung-Joon, C. Joon-Ho, Z. Ghassemlooy, and L. Chung Ghiu, “PWM-based PPM format for dimming control in visible light communication system,” in Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on, pp. 1-5.
    • [39] H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-mb/s NRZ visible light communications using a postequalized white LED,” Photonics Technology Letters, IEEE, vol. 21, no. 15, pp. 1063-1065, 2009.
    • [41] A. M. Street, K. Samaras, D. C. Obrien, and D. J. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electronics Letters, vol. 33, no. 12, pp. 1060-1062, 1997.
    • [42] A. R. Hayes, Z. Ghassemlooy, N. L. Seed, and R. McLaughlin, “Baseline-wander effects on systems employing digital pulse-interval modulation,” IEE Proceedings - Optoelectronics, vol. 147, no. 4, pp. 295-300, 2000.
    • [43] J. R. Barry, E. A. Lee, and D. Messerschmitt, Digital Communication. Boston: Kluwer Academic Publishers, 3rd ed., 2003.
    • [44] J. G. Proakis and M. Salehi, Fundamentals of communication systems. Pearson Prentice Hall, 2005.
    • [45] A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics Journal, vol. 4, no. 5, pp. 1465-1473, 2012.
    • [46] R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Electrical and Computer Engineering, 2006. ICECE '06. International Conference on, pp. 408-411.
    • [47] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt Express, vol. 20, no. 26, pp. B501-6, 2012.
    • [48] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: information-theoretic and communications aspects,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2619-2692, 1998.
    • [49] H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” Photonics Technology Letters, IEEE, vol. 26, no. 2, pp. 119-122, 2014.
    • [50] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” Journal of Lightwave Technology, vol. 32, no. 9, pp. 1807-1813, 2014.
    • [51] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539-541, 1990. 10.1038/347539a0.
    • [52] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
    • [53] C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, “Multi-colour organic lightemitting displays by solution processing,” Nature, vol. 421, no. 6925, pp. 829-833, 2003. 10.1038/nature01390.
    • [54] S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett, vol. 9, no. 3, pp. 980-3, 2009.
    • [55] J. Shinar, Organic Light-Emitting Devices: A Survey. Springer, 2003.
    • [56] Y. Zhao, L. Duan, D. Zhang, L. Hou, J. Qiao, L. Wang, and Y. Qiu, “Small molecular phosphorescent organic light-emitting diodes using a spin-coated hole blocking layer,” Applied Physics Letters, vol. 100, no. 8, p. 083304, 2012.
    • [57] F. Villani, P. Vacca, G. Nenna, O. Valentino, G. Burrasca, T. Fasolino, C. Minarini, and D. della Sala, “Inkjet printed polymer layer on flexible substrate for oled applications,” The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13398-13402, 2009.
    • [58] J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 1-3.
    • [59] P. A. Haigh, Z. Ghassemlooy, H. L. Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, and I. Papakonstantinou, “Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications,” Journal of Lightwave Technology, vol. 30, no. 19, pp. 3081-3088, 2012.
    • [60] R. Das and P. Harrop, “Organic and printed electronics - forecasts, players and opportunites 2007-2027,” report, IDTechEx, 2010.
    • [61] F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci Rep, vol. 3, p. 1324, 2013.
    • [62] R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, “A general relationship between disorder, aggregation and charge transport in conjugated polymers,” Nat Mater, vol. 12, no. 11, pp. 1038-1044, 2013.
    • [63] P. A. Haigh, Z. Ghassemlooy, and I. Papakonstantinou, “1.4-Mb/s white organic LED transmission system using discrete multitone modulation,” IEEE Photonics Technology Letters, vol. 25, no. 6, pp. 615-618, 2013.
    • [65] J. Clark and G. Lanzani, “Organic photonics for communications,” Nat Photon, vol. 4, no. 7, pp. 438-446, 2010. 10.1038/nphoton.2010.160.
    • [66] S. Valouch, M. Nintz, S. W. Kettlitz, N. S. Christ, and U. Lemmer, “Thicknessdependent transient photocurrent response of organic photodiodes,” IEEE Photonics Technology Letters, vol. 24, no. 7, pp. 596-598, 2012.
    • [67] B. Arredondo, C. de Dios, R. Vergaz, G. del Pozo, and B. Romero, “High-bandwidth organic photodetector analyzed by impedance spectroscopy,” IEEE Photonics Technology Letters, vol. 24, no. 20, pp. 1868-1871, 2012.
    • [68] L. Salamandra, G. Susanna, S. Penna, F. Brunetti, and A. Reale, “Time-resolved response of polymer bulk-heterojunction photodetectors,” IEEE Photonics Technology Letters, vol. 23, no. 12, pp. 780-782, 2011.
    • [69] E. S. Zaus, S. Tedde, J. Furst, D. Henseler, and G. H. Dohler, “Dynamic and steady state current response to light excitation of multilayered organic photodiodes,” Journal of Applied Physics, vol. 101, no. 4, pp. 044501-044501-7, 2007.
    • [70] I. A. Barlow, T. Kreouzis, and D. G. Lidzey, “High-speed electroluminescence modulation of a conjugated-polymer light emitting diode,” Applied Physics Letters, vol. 94, no. 24, pp. 243301-3, 2009.
    • [71] H. Sasabe, J.-i. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Advanced Materials, vol. 22, no. 44, pp. 5003-5007, 2010.
    • [72] T. Chiba, Y.-J. Pu, R. Miyazaki, K.-i. Nakayama, H. Sasabe, and J. Kido, “Ultrahigh efficiency by multiple emission from stacked organic light-emitting devices,” Organic Electronics, vol. 12, no. 4, pp. 710-715, 2011.
    • [74] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat Photon, vol. 3, no. 4, pp. 180-182, 2009. 10.1038/nphoton.2009.32.
    • [75] F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green lightemitting devices,” Nature, vol. 386, no. 6623, pp. 351-359, 1997. 10.1038/386351a0.
    • [76] B. Saleh and M. Teich, Fundamentals of Photonics. John Wiley & Sons, 2007.
    • [77] E. Schubert, Light-Emitting Diodes. Boston Univ., 2002.
    • [78] S. Chuang, Physics of Photonic Devices. Wiley, 2012.
    • [79] U. Ozgur, H. Liu, L. Xing, X. Ni, and H. Morkoc, “Gan-based light-emitting diodes: Efficiency at high injection levels,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1180- 1196, 2010.
    • [80] W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” The Bell System Technical Journal, vol. XXVIII, pp. 335-600, 1949.
    • [81] F. Trager, Springer Handbook of Lasers and Optics. Springer, 2012.
    • [82] H. Le Minh, Z. Ghassemlooy, A. Burton, and P. A. Haigh, “Equalization for organic light emitting diodes in visible light communications,” 2011.
    • [83] A. Fox, Optical Properties of Solids. Oxford University Press, 2001.
    • [84] K. Myny, E. van Veenendaal, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, “An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil,” SolidState Circuits, IEEE Journal of, vol. 47, no. 1, pp. 284-291, 2012.
    • [85] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.
    • [86] J. Clayden, N. Greeves, and S. Warren, Organic Chemistry. OUP Oxford, 2012.
    • [87] P. Atkins and J. de Paula, Physical Chemistry. W. H. Freeman, 2009.
    • [88] J. Frenkel, “On the transformation of light into heat in solids. i,” Physical Review, vol. 37, no. 1, pp. 17-44, 1931. PR.
    • [89] J. Frenkel, “On the transformation of light into heat in solids. ii,” Physical Review, vol. 37, no. 10, pp. 1276-1294, 1931. PR.
    • [90] G. H. Wannier, “The structure of electronic excitation levels in insulating crystals,” Physical Review, vol. 52, no. 3, pp. 191-197, 1937. PR.
    • [91] W. Brutting, Physics of Organic Semiconductors. Wiley, 2006.
    • [99] T. Someya, “Flexible electronics: Tiny lamps to illuminate the body,” Nat Mater, vol. 9, no. 11, pp. 879-880, 2010. 10.1038/nmat2886.
    • [100] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, and Z. H. Lu, “Unlocking the full potential of organic lightemitting diodes on flexible plastic,” Nat Photon, vol. 5, no. 12, pp. 753-757, 2011.
    • [101] T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat Photon, vol. 6, no. 2, pp. 105-110, 2012.
    • [116] S. Haykin, Communication Systems, 4th Ed. Wiley India Pvt. Limited, 2008.
    • [117] K. Samaras, A. M. Street, D. O”Brien, and D. J. Edwards, “Error rate evaluation of wireless infrared links,” in Communications, 1998. ICC 98. Conference Record. 1998 IEEE International Conference on, vol. 2, pp. 826-831 vol.2.
    • [118] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133, 1943.
    • [119] F. Rosenblatt, “Principles of neurodynamics,” 1962.
    • [120] J. Anderson, E. Rosenfeld, and A. Pellionisz, Neurocomputing. MIT Press, 1993.
    • [121] L. J. Cao and F. E. H. Tay, “Support vector machine with adaptive parameters in ifnancial time series forecasting,” Neural Networks, IEEE Transactions on, vol. 14, no. 6, pp. 1506-1518, 2003.
    • [122] S. C. B. Lo, S. L. A. Lou, L. Jyh-Shyan, M. T. Freedman, M. V. Chien, and S. K. Mun, “Artificial convolution neural network techniques and applications for lung nodule detection,” Medical Imaging, IEEE Transactions on, vol. 14, no. 4, pp. 711-718, 1995.
    • [123] B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive pattern recognition,” Computer, vol. 21, no. 3, pp. 25-39, 1988.
    • [124] S. Haykin, Neural networks: A comprehensive foundation. New Jersey, USA: Prentice Hall, 2nd ed., 1998.
    • [125] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359 - 366, 1989.
    • [126] S.-I. Amari and A. Cichocki, “Adaptive blind signal processing-neural network approaches,” Proceedings of the IEEE, vol. 86, no. 10, pp. 2026-2048, 1998.
    • [127] L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1116-1125, 2006.
    • [128] A. Toledo, M. Pinzolas, J. J. Ibarrola, and G. Lera, “Improvement of the neighborhood based levenberg-marquardt algorithm by local adaptation of the learning coefifcient,” IEEE Trans Neural Netw, vol. 16, no. 4, pp. 988-92, 2005.
    • [132] H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Organic Electronics, vol. 13, no. 11, pp. 2615-2619, 2012.
    • [145] F. Arca, M. Sramek, S. F. Tedde, P. Lugli, and O. Hayden, “Near-infrared organic photodiodes,” IEEE Journal of Quantum Electronics, vol. 49, no. 12, pp. 1016-1025, 2013.
    • [146] A. H. Azhar, T. Tran, and D. O'Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technology Letters, vol. 25, no. 2, pp. 171-174, 2013.
    • [147] W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Applied Physics Letters, vol. 95, no. 21, p. 213308, 2009.
    • [157] J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE Journal on Selected Areas in Communications, vol. 11, no. 3, pp. 367 - 379, 1993.
    • [158] Z. Ghassemlooy, P. A. Haigh, F. Arca, S. F. Tedde, O. Hayden, I. Papakonstantinou, and S. Rajbhandari, “Visible light communications: 3.75 mbits/s data rate with a 160 khz bandwidth organic photodetector and artificial neural network equalization [invited],” Photon. Res., vol. 1, no. 2, pp. 65-68, 2013.
    • [159] P. A. Haigh, F. Bausi, Z. Ghassemlooy, I. Papakonstantinou, H. Le Minh, C. Fléchon, and F. Cacialli, “Visible light communications: real time 10 mb/s link with a low bandwidth polymer light-emitting diode,” Optics Express, vol. 22, no. 3, pp. 2830- 2838, 2014.
    • [160] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Communications Magazine, vol. 51, no. 8, pp. 148-154, 2013.
    • [161] S. U. H. Qureshi, “Adaptive equalization,” Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, 1985.
    • [162] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature, vol. 459, no. 7244, pp. 234-238, 2009. 10.1038/nature08003.
    • [163] P. A. Haigh, Z. Ghassemlooy, I. Papakonstantinou, and H. L. Minh, “2.7 mb/s with a 93-khz white organic light emitting diode and real time ANN equalizer,” IEEE Photonics Technology Letters, vol. 25, no. 17, pp. 1687-1690, 2013.
    • [164] F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, vol. 48, no. 3, pp. S48-S55, 2010.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok