LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Potocnick, A.; Ganin, A.Y.; Takabayashi, Y.; McDonald, M.T.; Heinmaa, I.; Jeglic, P.; Stern, R.; Rosseinsky, M.J.; Prassides, K.; Arcon, D. (2014)
Publisher: R S C Publications
Languages: English
Types: Article
Subjects:
The most expanded fcc-structured alkali fulleride, Cs3C60, is a Mott insulator at ambient pressure because of the weak overlap between the frontier t1u molecular orbitals of the C603− anions. It has a severely disordered antiferromagnetic ground state that becomes a superconductor with a high critical temperature, Tc of 35 K upon compression. The effect of the localised t1u3 electronic configuration on the properties of the material is not well-understood. Here we study the relationship between the intrinsic crystallographic C603− orientational disorder and the molecular Jahn–Teller (JT) effect dynamics in the Mott insulating state. The high-resolution 13C magic-angle-spinning (MAS) NMR spectrum at room temperature comprises three peaks in the intensity ratio 1:2:2 consistent with the presence of three crystallographically-inequivalent carbon sites in the fcc unit cell and revealing that the JT-effect dynamics are fast on the NMR time-scale of 10−5 s despite the presence of the frozen-in C603− merohedral disorder disclosed by the 133Cs MAS NMR fine splitting of the tetrahedral and octahedral 133Cs resonances. Cooling to sub-liquid-nitrogen temperatures leads to severe broadening of both the 13C and 133Cs MAS NMR multiplets, which provides the signature of an increased number of inequivalent 13C and 133Cs sites. This is attributed to the freezing out of the C603− JT dynamics and the development of a t1u electronic orbital glass state guided by the merohedral disorder of the fcc structure. The observation of the dynamic and static JT effect in the Mott insulating state of the metrically cubic but merohedrally disordered Cs3C60 fulleride in different temperature ranges reveals the intimate relation between charge localization, magnetic ground state, lifting of electronic degeneracy, and orientational disorder in these strongly-correlated systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. (a) O. Gunnarsson, Alkali-doped fullerides, World Scientific, Singapore, 2004; (b) M. J. Rosseinsky, Chem. Mater., 1998, 10, 2665-2685; (c) S. Margadonna and K. Prassides, J. Solid State Chem., 168, 639-652 (2002).
    • 2. A. Y. Ganin, Y. Takabayashi, Y. Z. Khimyak, S. Margadonna, A. Tamai, M. J. Rosseinsky, and K. Prassides, Nat. Mater., 2008, 7, 367-371.
    • 3. Y. Takabayashi, A. Y. Ganin, P. Jegli , D. Ar on, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, and M. J. Rosseinsky, Science, 2009, 323, 1585-1590.
    • 4. A. Y. Ganin, Y. Takabayashi, P. Jegli , D. Ar on, A. Potonik, P. J. Baker, Y. Ohishi, M. T. McDonald, M. D. Tzirakis, A. McLennan, G. R. Darling, M. Takata, M. J. Rosseinsky, and K. Prassides, Nature, 2010, 466, 221-225.
    • 5. P. Jegli , D. Ar on, A. Poto nik, A. Y. Ganin, Y. Takabayashi, M. J. Rosseinsky, and K. Prassides, Phys. Rev. B, 2009, 80, 195424-195428.
    • 6. G. R. Darling, A. Y. Ganin, M. J. Rosseinsky, Y. Takabayashi, and K. Prassides, Phys. Rev. Lett., 2008, 101, 136404-136407.
    • 7. S. Chakravarty, M. P. Gelfand, and S. Kivelson, Science, 1991, 254, 970-974.
    • 8. M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Rev. Mod. Phys., 2009, 81, 943-958.
    • 9. Y. Murakami, P. Werner, N. Tsuji, and H. Aoki, Phys. Rev. B, 2013, 88, 125126-125139.
    • 10. C. C. Chancey and M. C. M. O'Brien, The Jahn-Teller Effect in C60 and Other Icosahedral Complexes, Princeton University Press, 1997.
    • 11. G. Klupp, P. Matus, K. Kamarás, A. Y. Ganin, A. McLennan, M. J. Rosseinsky, Y. Takabayashi, M. T. McDonald, and K. Prassides, Nat. Commun., 2012, 3, 912-917.
    • 12. O. Gunnarsson, J. E. Han, E. Koch, and V. H. Crespi, in Superconductivity in Complex Systems, eds. K. A. Müller and A. Bussmann-Holder, Springer Berlin Heidelberg, 2005, pp. 71-101.
    • 13. N. Iwahara and L. F. Chibotaru, Phys. Rev. Lett., 2013, 111, 056401.
    • 14. A. Poto nik, N. Manini, M. Komelj, E. Tosatti, and D. Ar on, Phys. Rev. B, 2012, 86, 085109.
    • 15. R. Blinc, P. Jegli , T. Apih, J. Seliger, D. Ar on, and A. Omerzu, Phys. Rev. Lett., 2002, 88, 86402.
    • 16. P. Jegli , R. Blinc, T. Apih, A. Omerzu, and D. Ar on, Phys. Rev. B, 2003, 68, 184422.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | LEMSUPER

Cite this article